

AUXILIARY TABLES

PART I: GRATICULES OF MAPS
 \qquad
 ${ }^{17}$
 J. DI GRAAFF HUNTER, M.A., Sc. D., E. Inst. P. EONORABY MOMBIER OF THE INSTITUQE OF BOYAL ENGMEERE, DCATHEMEATCAT ADVISEE TO THE SURVEY OF INDLA

\qquad

SIXTH EDITION 1938

PUBLIEFED BY ORDER OF BRIGADIER H. J. COUCHMAN, D.S.O., M.C., SURVEYOR GENERAL OF INDIA

PRINTED AT THE GEODETIC BRANCH OFFICE SURVEX OF INDIA, DEIFRA DON, 1936

Price One Rupee or One Shilling and Nine Pence

Saxbey of $\mathfrak{f l n d i a}$

AUXILIARY TABLES

PART I: GRATICULES OF MAPS

BY
J. de GRAAFF HUNTER, M.A., Sc. D., F. Inst. P. HONOBABT MEMBER OF THE INSTITCTE OF ROYAL ENGINEEBS, MATHEMATICAL ADVISER TO THE SUBVEY OF INDIA

SIXTH EDITION 1936

\qquad

PUBLISHED BY ORDER OF
BRIGADIER H.J. COUCHMAN, D.S.O., M.C., SURVETOR GENERAL OF INDIA

PRINTED AT THE GEODETIC BRANCH OFFICE, SURVEY OF INDIA, DEHRA DON, 1936

Price One Rupee or One Shilling and Nine Pence

Preface to Sixth Edition of the Auxiliary Tables of the Survey of India

The first edition of these tables was issued in 1851. A second edition was published in 1868, a third in 1887 and a fourth in 1906.

Each successive edition was an amplification of the former, so that, whereas the first edition contained only seventeen tables and sixteen pages of explanation, the fourth edition was a bulky volume containing sixty-seven tables and over one hundred pages of explanation.

In 1916 these tables were revised and extended in the fifth edition by J. de Graaff Hunter, M.A., Mathematical Adviser to the Survey of India, and additional tables were included. A single volume being inconvenient, the fifth edition was issued in five parts as under, and new editions of each part are published separately as required :-

> Part 1 Graticules of Maps.
> Part II Mathematical Tables.
> Part III Topographical Survey Tables.
> Part IV Geodetic Tables.
> Part V Lambert Grid Tables.

The fifth edition of Part I was reprinted (with minor changes) in $1920,1921 \& 1926$. The present edition contains the same tables as the last, with some addenda issued later, but they have been re-arranged so that the highest latitudes come at the top of the page. It is believed that this re-arrangement will make the tables easier to use.

TABLE OF CONTENTS

Graticules of Maps

Explanation	\ldots	\ldots	\ldots	\ldots
Chart showing percentage errors in modified secant conical projection	\ldots	\ldots	at end	

Chart showing percentage errors in modified secant conical projection
... at end

1-16 Map for Polyconic projection
17-37 Map for Modified Secant Conical projection
38 Map for projection for International Map
p, q, m, X, Y (arc-veraine) rectangalar co-ordinates: $\mathbf{X} \& \mathbf{Y}$

Tables	Scale		Limits for which tables are computed	Page	Tables		Scate		\| Limits for which tables aге computed	Page
	$\begin{gathered} \hline \text { Miles } \\ \text { to } \\ \text { inch } \\ \hline \end{gathered}$	$\underset{(=\text { million })}{\mathbf{M}}$					$\begin{gathered} \text { Miles } \\ \text { to } \\ \text { inch } \end{gathered}$	$\underset{(=\text { million })}{\mathbf{M}}$		
Polyconic projection.					Modified Secant Conical projection.					
					17 Map		$10 \cdot 5$	3: 2 M	$44^{\circ}-8^{\circ}$	(16)
$1 \mathrm{Map}^{\frac{1}{16}}$	$\frac{1}{4}$	\ldots	\ldots	(2)	18 Map		$15 \cdot 7_{8}$	1: 1M		(16)
$\left.\begin{array}{l} 2 \text { Map } \\ 3 \text { Mıо } \end{array}\right\}_{t}$	$\frac{1}{4}$	(4)	19 Map		$21 \cdot 0_{4}$	3: 4 M	"	(17)
3 Map (${ }^{\text {a }}$ 交	$\frac{2}{3}$	\ldots	...	(6)	20 Map		28	\cdots	40-8	(17)
4 Map	1	\ldots	...	(8)	21 Map	2	$31 \cdot 57$	1:2M	"	(18)
	1		\ldots	(10)	22 Map	2	,	"	$4 \pm$ - 8	(19)
$6 \text { Map }\}^{\frac{1}{4}}$	$1 \cdot 58$	1: $\frac{1}{10} \mathbf{M}$...	(11)	23 Map		"	"	44-26	(20)
$\begin{aligned} & 7 \text { Map } \\ & 8 \text { Map } \end{aligned} \text {. }$	$1 \frac{1}{3}$ 2	\cdots	\ldots	(12) (12)	24 Map		32	...	40-8	(20\&21)
$8 \mathrm{Map}$ $9 \text { Map }$	2	\ldots	...	(12) (13)	25 Map		$"$...	34-12	(21)
	$2 \frac{2}{3}$ 3	(13) (13)	26 Mnp		40	...	40-25	(22)
11 Map		1: 1			27 Map		$42 \cdot 0$	3: 8 M		(22)
12 Map)		1.			28 Map		$63 \cdot 1_{3}$	1: 4 M		(22)
13 Map 1	8				29 Map		64			(23)
14 Mnp	10.58	3: 2M			30 Map		$78 \cdot 9_{1}$	1: 6M		(23)
$15 \mathrm{Map}\} 2$	12				91 Map		80			(23)
16 Map	25.78	1:1m		(15)	32 Map	4	$94 \cdot 7_{0}$	1: 6M	40-8	(24)
	$15 \cdot{ }_{8}$	1.18			33 Map		96			(24)
Carte Internationale.					34 Map		$189 \cdot{ }^{4}$	1:12M		(24)
					35 Map		192	...		(25)
	$15 \cdot 7$	1:1 M	\ldots	(26)	36 Map 37 Map		$\left\|\begin{array}{c} 252 \cdot 5_{3} \\ 256 \end{array}\right\|$	1:16M		$\begin{aligned} & (25) \\ & (25) \end{aligned}$

Graticules of Maps

The projections now in use in the Survey of India are:
(1) A polyconic projection for the larger scales.

A modified secunt conical projection for the smaller scales.
(1). Polyconic projection. In this projection each graticule "square" PQRS is formed by sides of correct length: that is to say $P Q$ and $S R$ are accurately of the correct lengths measured along two parallels of latitude, and $S P=R Q$ is the correct meridian distance between these parallels. All the lines $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}, \mathrm{SP}$ are made straight: so it is obvious that parallels intermediate to $S R$ and $P Q$, and meridians intermediate to SP and RQ will be slightly in error.

Having set off the length SR ($=p$ for upper latitude) describe two circles with radii m and q and centre S and two more of the same radii with centre R, cutting in P and Q. A test
 of the accuracy is that $\mathrm{PQ}=p$ for lower latitude.

The percentage errors are independent of scale and are clearly greatest for any given latitude when the angular size of the square is greatest. The error in meridian increases with the latitude while the error in parallel is the same for all latitudes. With a 2° square and at latitude 40° the percentage error in meridian is $\left\{1-\cos (\sin \lambda)^{\circ}\right\} \times 100=0.0063 \%$ which is clearly negligible. The maximum error in parallel is 0.015%. This projection is accordingly quite satisfactory for maps of any scale with squares not greater than 2° of latitude and longitude.

Tables 1 to 16 Map are for use with this projection. The tabular values are:
(a) $p=$ distance measured along each parallel.

$$
=\Delta L \nu \cos \lambda \text {, where } \nu \text { is the normal to the meridian at } \lambda \text {. }
$$

(b) $m=$ distance measured along the meridian between two parallels.

$$
=\Delta \lambda \rho_{m}, \rho_{m} \text { being the radius of curvature in the mean latitude of the two }
$$ parallels.

(c) $q=$ distance measured along the diagonal of each "square".
$=\sqrt{p p^{\prime}+m^{2}}$, where p, p^{\prime} are distances measured along the upper and lower parallels.
Table 38 Map is for use for the Carte Internationale. Some explanation of errors in the parallels and meridians is given at the foot of the table.
(2). Modified secunt conical projection. As this is designed for small scale maps it deals with much larger areas and the percentage errors are accordingly much greater than in the former projection. They are indicated in each case by a footnote.

The projection is based on the two considerations:
(a) The lengths on the meridians shall be correct.
(b) The errors of length on the limiting latitudes shall be equal and each shall be equal (but of opposite sign) to the epror of length of the parallel at that latitude where this becomes a maximum. There are two intermediate parallels at which there is no error.

Meridians are represented by straight lines and parallels by arcs of circles described about a common centre.

In some cases the tables are extended to latitudes beyond those for which the projection has been computed: hut in each case the latitudes for which the projection has been computed are given. The tabular quantities are p, m, q as in the polyconic projection and also the meridian distances X and arc-versines Y of the corners of the several squares. The values of \mathbf{X} and Y permit the outer squares to be constructed without accumulation of error due to building up square by square. Thus for the point \mathbf{P} if PN is drawn at right angles to ON then $\mathrm{ON}=\mathrm{X}$ and $\mathrm{PN}=\mathrm{Y}$.

For detailed information regarding this projection reference should be made to Professional Paper No. 1.

Projection: Polyconic.
Scale 1 inch $=\frac{1}{4}$ mile.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{16}$ th Degree $\mathrm{S} q u a r e s$.

$85{ }^{\circ}$	38°	37°	B6 ${ }^{\circ}$	Letitude	35°		38°		$3{ }^{\circ}$		33°	
p	p	p	p	$60^{\prime} \quad 0^{\prime \prime}$	$n i$	1	m	q	m	9	m	q
13.264	13.455	$13 \cdot 642$	13.825		$17 \cdot 2{ }^{6}$	$21 \cdot 760$		21.876	$17 \cdot 241$	21.989	$17 \cdot 238$	22.101
-276	$\cdot 467$. 654	. 837	5615		21.760	17.243					
. 288	- 479	. 665	.848	5230	$\begin{array}{r} .246 \\ .246 \\ \hline \end{array}$	$\cdot 768$	- 243	. 883	-241	$21 \cdot 996$	$\cdot 238$	$\cdot 108$
-300	-491	- 677	-860	$48 \quad 45$. 246	$\cdot 775$	-243	. 890	240	$22 \cdot 003$	- 237	-115
$\cdot 312$.502.514.526	. 688	-871	450		7 H 2	243	. 897	240	. 010	$\cdot 237$	$\cdot 122$
-324		$\cdot 700$. 882	415	246 $2+6$.790 .797	- 243	$\cdot .904$	- 240	-017	. 237	.129.1136
. 336		$\cdot 711$	- 893	$37 \quad 30$		$\cdot 797$	-243	-911	'240	. 024	- 237	
$\cdot 348$	$\begin{array}{r} \cdot 53^{8} \\ \cdot 549 \end{array}$	$\cdot 723$	-904	33 45 30 0 26 15	-245	. 804	242	.918	- 239	.031	. 237	-143
-360		-734	. 915		$\begin{array}{r} 2+5 \\ \cdot 2+5 \end{array}$	$\begin{aligned} & .811 \\ & .819 \end{aligned}$	$\begin{aligned} & \cdot 242 \\ & \cdot 242 \end{aligned}$	$\cdot 925$ $\cdot 933$.239 .239	$\begin{aligned} & .038 \\ & .046 \end{aligned}$	$\cdot 237$	-149
-372	-561	-746	-927				$\cdot 242$	$\cdot 940$	-239		$\cdot 236$	-156
$\cdot 384$	$\begin{aligned} & .572 \\ & .584 \\ & .596 \end{aligned}$	-757	$\cdot 938$		-24.5	. 820	$\cdot 242$		239	.053	. 236	-163
- 396		-769	-949	$\begin{array}{ll}22 & 30 \\ 18 & 15\end{array}$	$\begin{array}{r} \cdot 2+5 \\ \cdot 245 \end{array}$.833 .840	- 242	-947	$\begin{array}{r} .239 \\ \cdot 239 \\ \hline \end{array}$	$\begin{aligned} & .060 \\ & .067 \\ & \hline \end{aligned}$	-236	170
-407		- 780	-960	150		-840	242	-954			. 236	- 177
. 419	$\begin{array}{r} .608 \\ .619 \\ 13.631 \end{array}$	$\begin{array}{r} .792 \\ .803 \\ 13.814 \end{array}$	$\begin{array}{r} .971 \\ .982 \\ 13.993 \end{array}$		- 244	. 848	.241	-961	. 238	. 074	. 235	-184
.431				$\begin{array}{rr} \hline 11 & 15 \\ 7 & 30 \\ 3 & 45 \end{array}$	$\cdot 344$	$\begin{array}{r} .855 \\ .862 \end{array}$. 968	-238	$\begin{aligned} & \cdot 08 \mathrm{I} \\ & \cdot .088 \end{aligned}$	-235	$\begin{aligned} \cdot 191 \\ \cdot \\ \cdot 198 \end{aligned}$
13.443					-2+4			-975	$\cdot 238$. 235	
				0	$17 \cdot 244$	21.839	17-241	$21 \cdot 982$	17.238	22.094	17.235	22.204
85^{3}	34	$83{ }^{\text {² }}$	0)	Latitude	35		33		38°		32^{5}	
14.004	14.179	14.349	14.515	$60^{\prime} \quad 0^{\prime \prime}$	- - -		- 77.232					
-015	-190	$\cdot 360$	- 526	5615	$\frac{17 \cdot 235}{\cdot 235}$	$22 \cdot 211$	$\frac{17.232}{.232}$	$22 \cdot 319$	17.229	22.425	$\frac{17 \cdot 225}{.226}$	$\frac{22 \cdot 530}{\cdot 537}$
. 026	- 201	- 370	- 536	5230	$\begin{array}{r} 235 \\ \cdot 23 t \\ \hline \end{array}$	$\begin{array}{r} 218 \\ -225 \\ \hline \end{array}$		$\begin{array}{r} \cdot 326 \\ \cdot 333 \\ \hline \end{array}$	$\begin{array}{r} \cdot 229 \\ \cdot 229 \\ \hline \end{array}$	$\begin{array}{r} \cdot 432 \\ \cdot 439 \\ \hline \end{array}$		
. 037	- 212		-546	$\begin{array}{cc} 48 & 45 \\ \hline 45 & 0 \end{array}$			$\begin{array}{r} 232 \\ \cdot 232 \\ \hline \end{array}$				$\cdot 226$	-544
-048	$\begin{aligned} & .222 \\ & .233 \\ & .242 \end{aligned}$				-234	. 232	. 232	$\cdot 340$	229	$\cdot 445$	- 226	. 550
-059		391 -402 -412	$.566$	41	$\begin{aligned} & .234 \\ & .234 \end{aligned}$	$\cdot 238$$\cdot 245$	-231	$\begin{aligned} & \cdot 346 \\ & \cdot 353 \end{aligned}$	$\begin{array}{r} \cdot 228 \\ \cdot 228 \end{array}$	$\begin{array}{r} .451 \\ .458 \end{array}$	- 226	$\begin{aligned} & .556 \\ & .563 \end{aligned}$
-070		-412	$\cdot 576$	3730			.231				$\cdot 226$	
. 081	- 254	$\cdot 423$	$\cdot 587$	3345	. 23.4	$\cdot 252$	$\cdot 231$	- 360	. 228	$\cdot 465$	$\cdot 225$	569
-092	-265	. 433	. 597	300	$\cdot 234$	$\cdot 259$, 231	-367	- 228	- 472	-225	-575
-103	- 276	-444	-607	4615	. 277	- 265	-231	- 373	$\cdot 228$	$\cdot 478$	${ }^{2} 225$	581
- 114	- 286	454	. 617	2230	-233	$\cdot 272$. 231	380	$\cdot 228$	485	-225	. 588
- 125	-297	. 464	. 627	$18 \quad 45$	$\cdot 233$. 279	$\cdot 230$	- 387	-227	-492	- 225	595
. 136	$\cdot 307$	- 474	. 637	150	. 233	- 286	$\underline{230}$	393	- 227	. 498	-225	601
- 147	$\cdot 318$	$\cdot 485$	-647	1115	. 233	- 293	$\cdot 230$	- 399	$\cdot 227$	- 504	- 224	. 607
-157	- 328	-495	. 657	730	- 233	- 300	-230	- 406	- 227	511	-224	. 614
14.168	14.339	14.505	14.667	345	$\cdot 232$	- 307	- 229	413	-227	. 518	-224	. 620
				$0 \cdot 0$	17.232	22.313	17.229	22:419	17.227	22. 524	17.224	22.626
81	80	$29^{\text {a }}$	98	Latitude	31		30		2		28	
14.677	$14 \cdot 8.44$	14.986	15.134	$60^{\prime} 0^{\prime \prime}$								
. 687	.844	14.996	-144	5616	17.224	22.632	17.221	$22 \cdot 732$	17.218	$22 \cdot 8.30$	17.216	22.925
- 697	. 853	$15 \cdot 005$	- 153	$\begin{array}{ll}52 & 10 \\ 50\end{array}$	-224	. 639	221	. 738	-218	. 836	.216	-931
-707	. 863	. 015	- 162	4845	-223	. 645	22	744	-218	-842	- 215	$\cdot 937$
$\cdot 716$. 872	. 024		45	. 223	. 651	22	750	218	. 848	. 215	-943
-726	. 882	.023	. 180	$\begin{array}{rr}41 & 0 \\ 415\end{array}$	-223	. 657	- 22	- 756	$\cdot 218$. 854	-215	-949
-736	$\cdot 892$. 042	-189	3730	- 223	. 664	220	-763	218	860	. 215	-955
					. 223	. 670	220	$\cdot 770$	$\cdot 217$	- 866	$\cdot 215$. 961
-746	'902	. 052	-198	$\begin{array}{ll}33 & 45 \\ 30\end{array}$	-223	. 676	220	$\cdot 776$	$\cdot 217$. 871	-215	-967
$\cdot 756$	-911	. 061	- 207	30	. 222	. 682	- 220	$\cdot 782$	$\cdot 217$. 876	. 215	. 973
-766	-921	- 070	-216	$26 \quad 15$	$\cdot 222$. 689	$\cdot 220$	$\cdot 788$	217	. 883	215	'979
' 775	-930	. 079	- 225	28 30 15 45	-222	. 696	- 219	$79+$	-217	-890	-214	-985
-785	-940	-089	-234	1645	-222	$\cdot 702$. 219	. 800	$\cdot 217$.896	. 214	'991
' 795	-949	-098	'242	150	- 222	$\cdot 708$. 219	- 806	$\cdot 216$	- 902	. 21	22.996
-805	-959	- 107	. 251	11.15	$\cdot 222$	$\cdot 714$	- 219	-812	. 216	-908	214	$23 \cdot 002$
.814	- 968	. 116	- 260	7. 30	. 221	. 720	. 210	.818	. 216	.914	$\cdot 214$. 008
14.824	14.977	15.125	15.269		17.221	-22.726	17.219	22.824	17.216	22.920	17.214	23.013
				0 0	1722	$22 \times$						
27°	80°	26^{5}	24^{5}	Latitude	2		$\underline{6}$		2		24	
15.278	15.416	15.550	15.680	$60^{\prime} \quad 0^{\prime \prime}$	17.213	.018	17.211	23.109	17.208	23.197	17.206	$23 \cdot 288$
$\cdot 287$. 425	-559	. 688	5615	.213	. 024	.211	.115	- 203	203	-206	. 288
- 295	. 433	-567	-696	5230	. 213	. 0240	-211	-121	- 208	- 208	- 206	. 293
-304	$\cdot 442$	'575	$\cdot 704$	4845	.213	.036	211	. 126	- 208	213	- 206	. 208
-313	-450	-583	-711	450	. 213		210	131	- 208	218	. 206	$\cdot 303$
-322	'459	- 592	-719	$41 \quad 15$	$\cdot 213$. 048	210	-137	-208	$22+$	- 206	$\cdot 308$
-330	:467	. 600	-727	$37 \quad 30$	212	. 054	210	$\cdot 143$	- 208	229	$\cdot 205$	-313
- 339	. 476	. 608	-735	3345	. 212	. 059	210	-148	-208	234	- 205	-318
- 348	-484	. 616	- 743	300	$\cdot \cdot 212$. 064	210	-153	-207	- 239	- 205	$\cdot 323$
- 357	-493	. 624	-751	$26 \quad 15$	-212	. 070	210	. 159	$\cdot 207$	$\cdot 245$	$\cdot 205$. 329
-365	- 501	. 632	- 758	2230	-212	$\cdot .076$	- 209	-165	-207	-251	-205	- 334
- 374	- 509	. 640	-766	1845	. 212	. 081	- 209	. 170	- 207	$\cdot 256$	-205	-339
$\cdot 382$	-517	. 648	-774	150	21	. 086	209	$\cdot 175$	- 207	$\cdot 261$	- 204	-344
-391	. 526	. 656	$\cdot 782$	11.15			. 209	$\cdot 181$	- 207	- 267	$\cdot 204$	- 349
- 399	. 534	. 664	-789	730	. 211	-098	-209	-187	- 206	- 272	-204	- 354
15.408	15.542	15.672	15.797	345	17.211	23.104	17.209	23.192	17.205	$23 \cdot 277$	17.204	23.352
				0								

1 Map.
Projection: Polyconic.
Scale 1 inch $=\frac{1}{4}$ mile.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{16}$ th Degree Squares.

20°	$22{ }^{3}$	21°	20°	Latitude	23^{3}		22°		$\underline{1}$		20°	
p	p	p	\underline{p}	$60^{\prime} \quad 0^{\prime \prime}$	m	q	m	q	m	$\underline{4}$	m	
$15 \cdot 80{ }_{4}$	15•924	16.039	16.149			$23 \cdot 364$	17.202	23.444	17.200	23.520	17.198	23.594
$8{ }^{812}$	932	. 046	- 156	$\begin{array}{ll}56 & 15 \\ 59 & 30\end{array}$	$\frac{17 \cdot 204}{\cdot 204}$	$\frac{370}{}$	$\begin{array}{r} \cdot 202 \\ \cdot 201 \end{array}$	$\begin{array}{r} 1449 \\ -454 \end{array}$, 200	. 525	-198	.599 .609 6
. 820	-939	-053	.162 -169	52 30 48 45		- 375			199		197	
. 828	'946	. 060	-169		. 204	$\cdot 380$. 201	458	199	534	- 197	697
. 835	.953.961.968	$\begin{aligned} & .067 \\ & .074 \\ & .081 \end{aligned}$	$\begin{array}{r}\cdot 176 \\ \cdot 176 \\ .18 \\ .189 \\ \hline\end{array}$	$\begin{array}{lr} \hline 45 & 0 \\ 41 & 15 \\ 37 & 30 \\ \hline \end{array}$	3	3^{85}	201	463	199	539	-197	${ }^{6} 12$
$\begin{array}{r} .843 \\ .850 \end{array}$					203	390	201	468	199		-197	. 617
					203	395	1	473	199	549	$\cdot 197$	621
$\begin{aligned} & \cdot 858 \\ & .865 \\ & .873 \\ & \hline \end{aligned}$	975	-88	- 196	30 0	$\cdot 203$ $\cdot 203$. 399	$\begin{array}{r} 201 \\ 201 \end{array}$	$\begin{aligned} & 4777 \\ & .482 \end{aligned}$	$\begin{array}{r} \cdot 199 \\ -199 \\ \hline \end{array}$	$\begin{array}{r} \cdot 553 \\ \cdot 558 \\ \hline \end{array}$	-197	.625 .630
	. 988	$\begin{array}{r} \cdot 095 \\ -102 \\ -102 \end{array}$	$\begin{aligned} & .202 \\ & .209 \\ & \hline 209 \end{aligned}$			404					-197	
	. 989				203	409	201	$\cdot 4^{87}$	199	. 563	-197	. 634
$\begin{aligned} & .880 \\ & .888 \\ & .895 \\ & \hline \end{aligned}$	15.996	-108	$\begin{array}{r}\cdot 215 \\ \cdot \\ \cdot 222 \\ \cdot 228 \\ \hline\end{array}$	$\begin{array}{ll} \hline 22 & 30 \\ 18 & 45 \end{array}$	$\begin{array}{r} 202 \\ -202 \\ -202 \end{array}$	414	$\begin{array}{r} \cdot 200 \\ .200 \\ \hline \end{array}$	$\begin{array}{r} 492 \\ .496 \\ \hline \end{array}$	$\begin{array}{r} 198 \\ -198 \\ \hline \end{array}$	$\stackrel{.567}{.571}$	-196	$\begin{array}{r} .638 \\ .642 \\ \hline \end{array}$
	$\begin{array}{r} 16.004 \\ .011 \end{array}$	$\begin{aligned} & 115 \\ & \cdot 115 \\ & .122 \end{aligned}$				419					-196	
					202	424	. 200	-501	198	$\cdot 576$. 196	647
$\begin{array}{r} 900 \\ 9.929 \\ 15.917 \end{array}$	$\begin{array}{r} .018 \\ .025 \\ 16 \cdot 03^{2} \end{array}$	$\begin{array}{r} 1129 \\ \cdot 195 \\ 16 \cdot 142 \end{array}$	$\begin{array}{r} .235 \\ .241 \\ 16.248 \end{array}$	$\begin{array}{rr} 11 & 15 \\ 7 & 30 \end{array}$	$\begin{array}{r} 202 \\ .202 \end{array}$	429	$\begin{aligned} & \cdot 200 \\ & .200 \\ & \hline \end{aligned}$	$\begin{array}{r} .506 \\ .511 \\ \hline \end{array}$	$\begin{array}{r} 198 \\ \cdot 198 \\ \hline \\ \hline \end{array}$	$\begin{array}{r} .581 \\ .585 \\ \hline \end{array}$	196	$\begin{array}{r}.652 \\ .656 \\ \hline\end{array}$
						434					-196	
					17.202 23.439		17.200	23.515	17.198	23.589	17.196	23.660
19°	10	17^{5}	16	Latitude	10°		18°		17°		16°	
$16 \cdot 254$	$16 \cdot 354$	16.449	$\underline{16 \cdot 540}$	$60^{\prime} 0$. 66	-194					
26 t	360	$\begin{aligned} & \cdot 455 \\ & \cdot 461 \\ & .467 \end{aligned}$	$\begin{aligned} & .546 \\ & \cdot 55 \end{aligned}$	$\begin{array}{ll} \hline 56 & 15 \\ 52 & 30 \\ 48 & 45 \\ \hline \end{array}$	$\begin{array}{r} .196 \\ .195 \\ \hline .195 \end{array}$	-669	194	735	92	-800	-190	. 861
-267	365					. 673	193	739	-192	. 804	190	865
274	37^{2}		. 59			. 677	193	743	19	. 808	19	868
. 288	378	$\begin{array}{r} \cdot 472 \\ \cdot 478 \\ \cdot 484 \end{array}$	- 56	$\begin{array}{rr} \hline 45 & 0 \\ 41 & 15 \\ 37 & 30 \\ \hline \end{array}$	- 195	-682	-193	-748	-191	812	-190	872
-286	384		- 567		$\begin{array}{r} \cdot 195 \\ -195 \\ \hline \end{array}$. 686	$\cdot 193$	$\cdot 752$.191	8.6	190	876
$\cdot 292$	390		. 572		-19.5	. 690	-193	$\cdot 756$	191	-820	190	880
299	$\cdot 396$	49	- 578	$\begin{aligned} & 37 \quad 30 \\ & \hline 37 \quad 45 \end{aligned}$		$\begin{array}{r} .694 \\ .699 \\ \hline \end{array}$	$\begin{array}{r} 193 \\ -193 \\ \hline \end{array}$	$\begin{array}{r} 760 \\ .764 \\ \hline \end{array}$	$\begin{array}{r} 191 \\ -191 \\ \hline \end{array}$	$\begin{array}{r} .823 \\ .827 \\ \hline \end{array}$	$\begin{array}{r} 190 \\ -189 \\ \hline \end{array}$.883 .887
. 305	$\cdot 402$. 495	$\cdot 583$ \cdot .	3,3 45 30 0 26 15 20	$\begin{array}{r} \hline 195 \\ -195 \\ \hline \end{array}$							
311	408	- 501		26 22 15	$\cdot \cdot 195$	$\cdot 703$	-193	$\cdot 768$	191	83 l	189	. 89 t
$\begin{array}{r}\cdot 317 \\ .324 \\ \hline\end{array}$	$\begin{array}{r}4 \\ \hline 420 \\ \hline\end{array}$	$\begin{aligned} & .506 \\ & .512 \\ & .518 \end{aligned}$	$\begin{array}{r} 593 \\ .599 \\ .594 \\ \hline \end{array}$	$\begin{array}{rr} 19 & 45 \\ 15 & 0 \end{array}$		$\begin{array}{r} \cdot 707 \\ \cdot 711 \\ \hline \end{array}$	$\begin{array}{r} 193 \\ -193 \\ \hline \end{array}$	$\begin{array}{r} .772 \\ .776 \\ \hline \end{array}$	$\begin{array}{r} \hline 191 \\ -191 \\ \hline \end{array}$	$\begin{array}{r} .835 \\ .838 \\ \hline \end{array}$	$\begin{array}{r} 189 \\ \cdot 189 \\ \hline \end{array}$	$\begin{array}{r}894 \\ .897 \\ \hline\end{array}$
. 330	. 426				$\begin{array}{r} 194 \\ -194 \\ \hline \end{array}$							
. 336			. 609		-194	715	192	7^{80}	19	-842	$\cdot 189$	901
342	43^{8}	. 524	. 614	1 7	-19	$\begin{array}{r}7 \\ \hline 79 \\ \hline\end{array}$	-192	${ }^{7} 784$	19	${ }^{8} 846$	189	05
16.348	16.44	16.535	16.620	345	$\cdot 194$	723	$\cdot 192$. 788	-190	. 850	189	909
				00	17.194	23*727	17-192	23.792	17.190	23.853	17.189	23.912
$1{ }^{6}$	14	$1{ }^{3}$	12	Latitude	15		1					
16.625	$16 \cdot 705$	$16 \cdot 780$	16.850	$60^{\prime} 0^{\prime \prime}$								
. 630	710	788	. 855	5615	$\begin{array}{r}17.189 \\ \hline .189\end{array}$	23.915	$\begin{array}{r}17 \cdot 187 \\ \hline .87 \\ \hline 18\end{array}$	23.970	$\frac{17 \cdot 186}{.186}$	24.021	$\frac{17 \times 184}{18}$	24.068
-635	$\cdot 715$	-789	- 859	52 30 49 45	$\begin{array}{r} 189 \\ -189 \\ \hline-189 \end{array}$	$\begin{array}{r} 919 \\ \cdot 922 \\ \hline \end{array}$	$\begin{array}{r} 187 \\ -187 \\ \hline \end{array}$	$\begin{array}{r} \cdot 974 \\ \cdot \\ \hline 977 \end{array}$	$\begin{array}{r} \cdot 186 \\ -185 \end{array}$	$\begin{array}{r} \cdot 024 \\ \cdot 027 \end{array}$	$\begin{aligned} & 184 \\ & \cdot 184 \end{aligned}$	$\begin{array}{r} .071 \\ .074 \end{array}$
. 640	720	794	. 863	$48 \quad 45$	- 188	92	$\cdot 187$. 980	$\cdot{ }^{185}$	03	$\cdot 184$. 077
645	724	$\cdot 798$	-867	450	$\cdot 188$						$\cdot 184$. 080
. 650	729	. 803	.871 .875	$\begin{array}{ll}41 & 15 \\ 37 & 30\end{array}$	$\cdot 188$. 933	-187	. 988	-185	-036	.184	. 083
. 65	734	. 807	. 875	$37 \quad 30$. 888	936	. 186	. 989	$\cdot 185$. 039	$\cdot 184$. 086
. 5661	7	$\cdot 812$.816 .8	.879 .883	$\begin{array}{ll}33 & 45 \\ 30 & \\ \\ \end{array}$	-188	939	- 186		. 185	042	$\cdot^{18} 8_{4}$	-089
. 666	'743	.816 .820	$\begin{array}{r}.883 \\ .887 \\ \hline\end{array}$	$\begin{array}{rr}30 & 0 \\ 26 & 15\end{array}$	${ }^{-188}$	943	- 186	- 996	. 185	. 045	-184	-092
. 671	748		. 887		. 188	. 947	- 186	23.999	. 185	$\cdot 248$	184	095
. 685	$\begin{array}{r}.758 \\ .762 \\ \hline 68\end{array}$	$\begin{array}{r}.829 \\ .83 \\ \hline\end{array}$.895 .899	$\begin{array}{rr}18 & 45 \\ 15 & 0\end{array}$	-188	$\cdot 953$. 186	. 005	$\cdot 185$	- 05	$\cdot 183$	-099
-690	76	838		$11 \quad 15$	$\cdot 187$	'957	-186	-009	$\cdot 185$. 057	${ }^{183}$	$\cdot 102$
. 995	771	. 842	-907	730	$\cdot 187$	'960	- 186	-012	- 185	-060	-183	- 105
$16 \cdot 700$	16.776	16.846	16.911	345	$\cdot 187$. 963	18	. 015	$\cdot 184$	- of_{3}	.$_{183}$	-108
				0	$17 \cdot 187$	23*966	$17 \cdot 186$	24.018	17-184	24.065	17.183	24.110
11	10		8	Untitude								
16.915	16.975	17.029	17.079	60' $0^{\prime \prime}$	17.183	24.113	17.182	.	17.181	4.192	. 180	-226
-919	. 979	-033	.082	56 56 15	. 183	$\cdot 116$. 182	157	-181	195	-180	228
-923	-992	-036	-085	52 30 48 45	.183	-119	$\cdot 182$. 160	.18ı	-197	${ }^{18} 8$	230
927	-9n	-039	-088	4845	$\cdot 183$	122	182	162	. 181	199	. 180	.232
$\begin{array}{r}\cdot 930 \\ \cdot 9.14 \\ \hline\end{array}$	$\cdot 98$		-091	$\begin{array}{rrr}45 & 0 \\ 41 & 15\end{array}$	- 183	$\cdot 124$	$\cdot 182$	-164	$\cdot 181$	20	$\cdot 180$. 234
-9,98	16.906	-49	. 996	$\begin{array}{ll}37 & 30\end{array}$	183	$\cdot 12$	$\cdot 182$	$\cdot 167$	181	- 203	180	. 236
942	17.000	O5			. 183	130	181	169	180	205	$\cdot 179$	238
-946	$\cdot \mathrm{O} 3$	055	. 102	$\begin{array}{rrr}30 & 0\end{array}$	$\cdot 183$ \cdot .182	${ }^{1} 132$	$\cdot{ }^{181}$	$\cdot 171$	-180	- 207	$\cdot 179$	$\cdot 240$
950	-007	. $5_{58}{ }^{8}$	-105	$26 \quad 15$	$\cdot 182$	-134	$\cdot 181$	$\cdot 173$	-180	-209	$\cdot 179$	$\underline{241}$
$\cdot 953$	-оוо	061	107	2230	18	-137	.181	$\cdot 176$.180	211	$\cdot 179$	243
9.97	-013	-064	$\cdot 110$	$\begin{array}{ll}18 & 45\end{array}$	${ }_{18}^{182}$	- 140	181	$\cdot 179$	- 180	-213	179	245
-960	-016	-067	113	150	182	142	181	. 181	18	. 215	179	247
. 964	029	70		$\begin{array}{ll}11 & 15\end{array}$	$\cdot 182$	144	181	. 183	180	217	$\cdot 179$. 249
-964	-023	.073	118	7 30	182 .182 18	$\cdot 147$.$_{181}^{181}$. 188	-180	220	179	-25I
16.972	17.026	17.076	17-121	3 45	182	1.50	18 i	. 188	180	222	$\cdot 179$. 253
				0	17.182	24.152	17.181	24.190	17.180	24.224	17.179	24.255

Lengths in inches along paralle $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{8}$ th Degree Squares.

Lengths in inches along parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{8}$ th Degree Squares.

3 Map.

Projection: Polyconic.
Scale 1 inch $=\frac{2}{3}$ mile.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{8}$ th Degree Squares.

3 Map.
Projection: Polyconio.
Scale 1 inch $=\frac{2}{3}$ mile.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{8}$ th Degree Squares.

Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{8}$ th Degree Squares.

Projection: Polyconic.
Scale 1 inch = 1 mile.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{8}$ th Degree Squares.

5 Map.
Lengths in inches along Parlel Me . P :

p	$\frac{\text { Latitude }}{}$	m	q	p	Latitude	m	q	p^{\prime}	Latitude	m	
13.263	$40^{\circ} \quad 0^{\prime}$			15.550	$26^{\circ} 0^{\prime}$			$\frac{16.915}{}$	$12^{\circ} 0^{\prime}$		
$3{ }^{12}$	39	$\frac{17 \cdot 246}{.245}$	$\frac{21 \cdot 77 \mathrm{I}}{.800}$	${ }^{58} 3$	$25 \quad 45$	$\underline{17.208}$	$\underline{23.204}$	-930	11-45	$\underline{17.183}$	24.118
360	30	$\begin{array}{r}\cdot 245 \\ \cdot \\ \cdot \\ \hline\end{array}$	-800	-616	30	-208	$\cdot 226$	-946	11 $\begin{array}{r}40 \\ \\ \hline\end{array}$	${ }^{18} 8$	128
407	15	- 245	.829 .858	-648	15	-207	- 247	-960	15	-182	138
455	$39 \quad 0$	244	. 858	$\cdot 680$	25	- 207	$\cdot 269$. 975	11	$\cdot 182$	148
-502	$38 \quad 45$	243	886	$\cdot 711$	$24 \quad 45$. 206	289	16.989	$10 \quad 45$. 182	-159
- 549	80	$\begin{array}{r}243 \\ . \\ \hline\end{array}$	-915	-743	30	- 205	31	$17 \cdot 003$	30	182	168
$\cdot 596$	15	242 241	-943	. 774	15	- 205	1	-016	15	-181	177
$\cdot 642$	$38 \quad 0$	241	-971	. 804	24	. 20	35 I	029	10	-181	-186
. 688	$37 \quad 45$	240	2I•999	. 835	$23 \quad 45$	204	372		$\begin{array}{ll}9 & 45\end{array}$	-181	$\cdot 195$
734	30	240	$22 \cdot 027$. 865	30	- 203	392	-055	- 30	-180	\%
780	15	-239	-055	-895	15	-203	12	-067	15	- 180	212
. 825	$\square^{37} 0$	238	. 0	- 924	230	202	43 I	079	90	-180	221
$\cdot 871$	$36 \quad 45$	237	- II I	-953	$22 \quad 45$	202	45°	-09I	8	180	$\cdot 229$
- 915	30	- 237	- 139	I5.982	30	201	470	- 102	$\begin{array}{r}\text { - } \\ \hline\end{array}$	${ }^{18}$	237
13.960	15	$\stackrel{.}{ } \cdot 2$	-166	16.011	15	-201	-490	-113	15	-179	- 244
$\underline{1+004}$	$36 \quad 0$	235	$\cdot 194$	039	22	0	508	$\cdot 123$	80	- 79	252
-048	8545	-235	21	067	2145	199	527	734	45	-179	$\cdot 259$
-092	30	- 234	-248	-095	30	- 19	546	-143	30	${ }^{1} 19$	266
-136	15	${ }^{2} 2331$	${ }^{2} 275$	-122	15	-198	56	153	- 15	- 179	- 273
-179	\%5 0	$\cdot 232$	302	149	21	-198	582	$\cdot 162$	7	-178	279
- 222	3445	23^{2}	329	176	2045	19	600			-178	. 285
- 265	30	$\cdot 231$	356	- 202	30	- 197	618	-180	30	-178	292
- 307	15	$\stackrel{+}{2} 30$	3^{82}	228	15	-196	-635	188	1.5	-178	298
$\cdot 349$	34	230	409	254	20	-196	-653	-196	60	-178	303
-391	33 - 5	- 229	435	280	19 45	19	:670	204	45	-177	308
4	30	- 228	461	- 305	30	1	-688	21	30	177	314
474	15		788	330	15	- 195	705	218	15	-177	318
- 515	$33-0$	227	$\stackrel{5}{51}+$	354	19	-194	721	22	50	-177	323
$\cdot 556$	3245	226	539	- 378	1845	-194	73^{8}		4.45	-171	328
- 597	30	${ }^{2} 26$	$\cdot 566$	- 402	30	- r93	54	237	30	-177	332
- 637	15	225	$\cdot 591$	+26	1.7	-193	. 770	243	15	$\begin{array}{r}\cdot 177 \\ -17 \\ \hline\end{array}$	-337
. 671	320	$22+$.616	+49	186	192	788	249	40	-177	- 340
716	3145	223	-641		1745	$\cdot 192$	801			-176	341
$\cdot 756$	30	-223	$\cdot 667$	-4	30	-191	-817	- 258	30	-176	347
795	15	${ }_{-}^{222}$	-692	-548	15	-191	- 833	- 263	15	- 176	35^{1}
. 834	310	-221	$\cdot 716$	540	17	191	-848	$\cdot 267$	3	-176	354
. 872	$30 \quad 45$	221	$7+1$	-561	$16 \quad 45$	i^{190}	. 862	271	245	-176	356
$\cdot 911$	30	220	$\cdot 766$. 583	30	-190	-877	27	30	-176	359
-949	15	219	$\cdot 790$. 60.4	15	189	-892	277	15	76	61
1+.986	30	219		$\cdot 625$	$16 \quad 0$	IS9	$\cdot 906$	$\cdot 280$	2	76	363
15.024	9	18	. 839	-645	1545	188	920	282	145	-176	365
- 06 I	30	218	- 863	- 666	30	88	-934	285	30	. 176	367
. 098	15	217	887	685	15	${ }^{188}$	$9{ }^{9} 8$	- 286	15	- 176	368
134	$29 \quad 0$	216	910	$\cdot 705$	15	7	961	288	0	-176	369
-171	$28 \quad 45$	216	934	$\cdot 724$	$14 \quad 45$	187	-974	289	0 45	-176	370
- 207	30	215	958	- $7+3$	30	-187	23.988	290	30	- 176	371
- 242	15	214	22.981		15	- 186	$22^{\circ} \cdot 000$	- 290	15	$\begin{array}{r}176 \\ -176 \\ \hline\end{array}$	371
$\cdot 278$	28	214	${ }^{23 \cdot 004}$. 780	$14 \quad 0$	186	$\cdot 013$	17290	0	17-176	24*371
$\cdot 313$	2745	213	027	79^{8}	$18 \quad 45$. 186	026				
-348	30	- 213	-050	. 816	30	- 185	. 037				
382	15	-2	-072	-833	15	-185	$\cdot{ }^{\circ} 90$				
416	27	11	. 094	. 850	13	185	-062				
450	$26 \quad 45$	211	17	867	12 4\%	184	-073				
484	30			. 883	30						
15.517	15		$\cdot 161$ $23 \cdot 183$	16.899	15	84	09\%				
	260	17.209	$23 \cdot 183$		120		24-107				

6 Map.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{4}$ th Degree Squares.

p	Latitude	m	q	p	Latitude	m	q	p	Latitude	m	q
$8 \cdot 404$	$40^{\circ} 0^{\prime}$			9.853	$26^{\circ} \quad 0^{\prime}$			10.717	$12^{\circ} 0^{\prime}$		
-434	3945	$\underline{10.927}$	$\underline{13.794}$	-874	$25 \quad 45$	10.903	14.703	727	1145	$\underline{10.887}$	${ }^{1} 5 \cdot 280^{\circ}$
-465	30	-926	-812	-894	30	-903	$\cdot 716$	- 737	11 	$\cdot 887$	$\cdot 287$
- 495	15	-926	-83I	-915	15	$\cdot 902$	- 729	-746	15	-887	- 294
- 525	$30 \quad 0$	-926	-849	-935	$25 \quad 0$	902	743	755	110	886	$\cdot 300$
- 555	3845	$\cdot 925$	$\cdot 867$	-955	2445.	2	$\cdot 757$	$\cdot 764$	1045	. 886	-306
- 585	30	$\cdot 925$	-885	-975	30	901	$\cdot 769$	773	30	. 886	312
.614	15	-924	-903	9.994	15	-901	782	$\cdot 782$	15	886	-319
-644	$38 \quad 0$.	-924	$\cdot 921$	10.014	$24 \quad 0$	900	795	790	10 0,	886	$\cdot 325$
-673	$37 \quad 45$	$\cdot 923$. 938	-033	$23 \quad 45$	900	808	798	945	. 886	-330
-702	30	'923	-957	-052	30	-900	-82I	-806	30	. 885	335
-731	15	-922	- 974	-071	15	-899	-833	-8.14	15	-885	341
$\cdot 760$	$37 \quad 0$	2	13.992	$\cdot \mathrm{o89}{ }^{\prime}$	$23 \quad 0$	9	6	-821	90	-885	346
$\cdot 788$	$36 \quad 45$	921	$1+.009$	-108	$22 \quad 45$. 899	-858	829	845	. 885	$\cdot 351$
-817	30	. 921	-027	- 126	30	-898	-870	-836	30	-885	$\cdot 357$
-845	15	-921	-0+5	- I $4+$	15	-898	-882	. 843	15	-885	-362
. 873	36	-920	-062	- 162	$22 \quad 0$	$\cdot 898$	-895	-849	80	-. 885	$\cdot 366$
$\cdot 901$	$35 \quad 45$	920	- 079	-180	2145	- 897	-906	$\cdot 856$	745	$\cdot 884$	370
-929	30	919	-096	-197	30	-897	-918	- 862	30	-884	375
-956	15	-919	- I I +	215	15	-897	-930	-868	15	-884	- 379
$8 \cdot 984$	350	-918	-130	232	210	-896	. 941	. 874	70	-884	383
9.011	34-45	-918	-148	$2+9$	$20 \quad 45$	-896	-953	- 888	64	-884	$\cdot 387$
.038	30	-917	-16 ${ }^{-1}$	- 266	30	-896	-965	-885	30	-884	- 39 I
- 065	15	$\cdot 917$	-181	- 282	15	-895	-975	. 89 y	15	-884	- 395
-092	$3+0$	$\cdot 010$	-198	$\cdot 299$	$20 \quad 0$	-895	-987	-896	60	-884	-399
8	3340	916	-215	-35	1945	-895	$1+998$	'900	$5-45$	$\cdot 884$	-402
-145	30	-916	- 232	-331	30	-895	15.009	-905	30	-883	-405
-171	15	-915	-248	-346	15	-89+	- 019	-910	15	-883	+08
- 197	$33 \quad 0$	-915	$\cdot 265$	- 362	$19 \quad 0$	- 994	-029	914	50	-883	$\pm \pm$
- 223	3245	$\cdot 01+$	-281	-377	$18 \quad 45$	-89+	-0,0	-918	445	. 883	+114
-248	30	-914	- 297	- 303	80	-893	- 050	- 922	30	. 883	417
-27.	15	-913	313	- 40 \%	15	-893	- 060	\bigcirc	15	-883	- +20
- 299	320	$\cdot 913$	329	22	18 0	-893	-071	929	40	- 883	-422
$32+$	$31-45$	-913	- 346	-437	1745	-893	- 08 f	- 932		. 883	$\cdot 425$
- $3+9$	30	-912	361	-451	30	-892	- 090	-935	30	. 883	$\cdot 427$
- 374	15	912	377	- 466	15	-892	100	-938	15	-883	- +29
399	0	911	393	480	170	-892	I 10	-940	30	-883	+ +31
- 423	$30 \quad 45$	II	- 409	$\cdot 493$	16 4.5	. 892	. 120	-943	245	883	$\cdot 432$
-447	30	$\cdot 910$	424	-507	30	-891	- 128	-945	30	. 883	$\cdot 43+$
-471	15	-910	-440	. 520	15	-891	- 138	$\begin{array}{r}94 \\ \hline 94\end{array}$	15	-883	- 435
- 495	$30 \quad 0$	910	- 455	533	$16 \quad 0$	-891	-147		20	$\cdot 883$	- 437
-519	$29 \quad 45$	909	- 470	546	15 4\%	-890	- 1.55			. 882	$\cdot 438$
-543	80	-909	- 486	- 5.59	30	- 890	- 164	-951	30	. 883	- 439
- 566	15	-908	- 501	- 572	15	-890	- 173	-953	15	- 883	+40
589	$29 \quad 0$	$\cdot 908$	- 516	584	150	-800	-182	954	10	. 883	441
-612	2845	-908	-531	- 596	14.45	. 800	-190		045	. 883	$\cdot 441$
-635	30	-907	-546	. 608	130	-889	-198	-954	30	. 883	44^{2}
-658	15	$\cdot 907$	-561	-620	15	-889	206	-955	15	. 883	$\cdot 4{ }^{2}$
680	$28 \quad 0$	$\cdot 906$	- 575	. 632	140	-889	-215	10'955	00	10.883	$15 \cdot 442$
$\cdot 702$	$27 \quad 45$	-906	$\bullet .590$	-643	1345	-889	223				
$\cdot 724$	30	- 906	-604	-654	30	-888	. 230				
746	15	-905	-618	. 665	15	- 888	- 237				
$\cdot 768$	$27 \quad 0$	$\cdot 905$. 633	$\cdot 676$	13)	. 888	- 245				
$\cdot 789$	2645	'904	$\cdot 646$		1245	. 888	- 253				
-81I	30	904	-661	. 697	80	-888	- 260				
$0 \cdot 832$	15	-904	-675	10.707	15	-887	- 266				
	$26 \quad 0$	$10.9031{ }^{1}$	4.688		120	10.887	$15 \cdot 273$				

Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{2}$ Degree Squares.

p	Latitude	n	4	P	Latitude	m	q		Latitude		
19.896 20.040	$\begin{array}{ll}40^{\circ} & 0^{\prime} \\ 39 & 30\end{array}$	25.868	32.680	23.326	$\begin{array}{ll}26 & 0^{\prime} \\ 25 & 30\end{array}$	5.812	34	$\frac{p}{25 \cdot 374}$	$\frac{12}{} 2^{2} 0^{\prime}$	m	q
$\cdot 182$	39 0	. 866	${ }^{-764}$	- 422	25 30 25 0	5.812 -810	$\begin{array}{r}34.824 \\ .888 \\ \hline\end{array}$. 420	$\begin{array}{cr}11 & 30\end{array}$	25.774 .773	36. 184 .214
- 322	3830	. 864	-848	.614	2430	-808	34.950	$\begin{array}{r}.462 \\ .504 \\ \hline\end{array}$	$\begin{array}{rr}11 & 0 \\ .10 & 30\end{array}$	$\cdot \cdot 772$	-244
$\cdot 464$	380	. 866	$\frac{32 \cdot 934}{33 \cdot 022}$	$\cdot 706$	240	. 806	35.010	. 54.6	10 0	$\cdot 771$.274
. 602	$37 \quad 30$. 860	$33 \cdot 022$	$\cdot 796$	$23 \quad 30$. 805	- 074	- 582	930	-771	-300
740	370	.856	102	. 886	230	. 804	-134	-618	90	-770	-324
20.872	$36 \quad 30$.856 .854	190	$23 \cdot 974$	2230	. 802	- 190	.654	830	$\cdot 770$	-348
$21 \cdot 006$	360	.854	270	24.058	220	-801	$\cdot 248$	-686	80	- 769	- 372
-138	$35 \quad 30$	852 850	-352	\cdots	2130	. 800	-304	$\cdot 716$	730	$\cdot 769$	- 397
-270	350	$\cdot 850$. 432	. 222	210	$\cdot 798$	-358	' 744	70	$\cdot 768$	$\cdot 414$
- 396	$34 \quad 30$.848	-514	$\cdot 304$	$20 \quad 30$	' 796	$\cdot 416$. 770	630	$\cdot 768$	-432
$\cdot 526$	340		594	$\cdot 382$	20.0	$\cdot 794$	$\cdot 466$		60	$\cdot 767$	$\cdot 450$
.648	$33 \quad 30$. 844	-672	- 456	19 - 30	- 793	- 520	.818	$5 \quad 30$	$\cdot 767$	- 468
774	330	-842	$\cdot 750$	532	190	- 792	- 568	-841	50	$\cdot 767$	$\cdot 4^{81}$
$21 \cdot 894$	3230	- 8.840	. 828	. 604	$18 \quad 30$	790 $\times \quad 788$. 620	. 858	430	$\cdot 766$	-490
$22 \cdot 014$	320	. 838	-906	. 676	18 0	-788	. 668	. 872	4. 0	$\cdot 766$	- 508
. 134	3130	.836	33-982	$\cdot 744$	1730	$\cdot 787$	- 716	. 888	330	$\cdot 766$	-520
$\cdot 252$	310	. $83+$	$34 \cdot 056$. 810	170	786	$\cdot 760$		30	$\cdot 765$	- 528
$\cdot 366$	$30 \quad 30$.832	. 132	. 874	1630	$\cdot 785$	- 806	$\cdot 911$	230	$\cdot 765$	-538
-480	$30 \quad 0$	-830	-204	$24 \cdot 936$	160	$\cdot 784$. 848	. 920	2	$\cdot 765$. 544
. 590	$29 \quad 30$	828	$\cdot 276$	25.000	1530	$\cdot 733$	-890	. 927	130	$\cdot 764$. 550
- 702	290	826	- 348	. 060	150	$\cdot 782$	-932		0	$\cdot 764$	552
. 810	$28 \quad 30$.824	-420	-116	1430	$\cdot 780$	$35.97{ }^{\circ}$	$\cdot 934$	030	. 764	. 556
22.918	28 0	. 822	-488	- 170	14.0	$\cdot 779$	$36 \cdot 010$	25.936	0 0	$25 \cdot 764$	36.558
$23 \cdot 022$	$27 \quad 30$.820	. 558	. 224	$13 \quad 30$	$\cdot 778$	-048				
-124	27	818	626	-276	130	$\cdot 777$. 08.				
- 226	2630	816	. 692	. 326	1230	$\cdot 776$. 118				
$23 \cdot 326$	260	$25 \cdot 814$	$34 \cdot 75^{8}$	$25 \cdot 374$	120	$25 \cdot 775$	$36 \cdot 150$				

8 Map.
Projection: Polyconic.
Scale 1 inch $=2$ miles.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{2}$ Degree Squares.

\boldsymbol{p}	Latitude	m	q	p	Latitude	m	q	p	Latitude	m	$?$
$13 \cdot 264$.360	$\begin{array}{cc}40^{\circ} & 0^{\prime} \\ 39 & 30\end{array}$			15.550 .616	$\begin{array}{ll}26 & 0^{\prime} \\ 25 & 30\end{array}$			16.916 .946	$\begin{array}{lc} 12^{\circ} & 0^{\prime} \\ 11 & 80 \end{array}$		
-360	3930	$\begin{array}{r}17.246 \\ \hline 244 \\ \hline\end{array}$	$\begin{array}{r}21.786 \\ .842 \\ \hline .88\end{array}$. 616	$\begin{array}{rr}25 & 30 \\ 25 & 0\end{array}$	$\begin{array}{r}17.208 \\ \hline 206 \\ \hline .206\end{array}$	$\begin{array}{r} 23.216 \\ .258 \\ \hline \end{array}$	$\frac{.946}{16.974}$	$11 \quad 30$	$\begin{array}{r}17.182 \\ .182 \\ \hline .182\end{array}$	$\begin{array}{r}24 \cdot 122 \\ .142 \\ \hline\end{array}$
- 454	$\begin{array}{rr}39 & 0 \\ 38 & 30\end{array}$	$\cdot 242$. 898	.680 .742	$\begin{array}{rr}26 & 0 \\ 24 & 30\end{array}$	$\cdot 206$	$\cdot 300$	$16 \cdot 974$ 17.002	$\begin{array}{lr} 11 & 0 \\ 10 & 30 \end{array}$	-182	-162
-642	380	-242	21.935	-804	24.0	-204	- 340	O	100	-182	$\mathrm{I}_{1} \mathrm{~S}_{2}$
$\cdot 734$	3730	-240	$22 \cdot 014$. 854	23 30	$\cdot 204$	-382	. 054	3130	180	. 200
. 826	370	-238	68	924	230	- 202	-422	. 078	90	- 180°	$\cdot 216$
13.914	3630	-238		15.982	2230	202	$\cdot 460$	-102	$8: 30$	- 180	$\cdot 232$
14.004	360	$\cdot 236$		16.038	220	- 200	$\cdot 498$	2	- 0	18	-248
-092	3530	-234	-234	.094	2130	20	- 536	-124	730	$\cdot 178$	-263
$\cdot 180$	350	-232.		. 148	210	-108	- 572	-162	70	.178	-276
. 264	3430	-232	- 342	202	$20 \quad 30$	-198	. 610	. 180	630	$\cdot 178$	- 288
	34 0	. 230	-396		200	-196	. $6+4$. 189	60	$\cdot 178$	-300
$\cdot 432$	3330	-228	- 44^{8}	. 304	19 - 30	-196	. 680	- 212	530	-178	-312
- 516	330	28	-500	-354	$19{ }^{-0}$	-19+	712	$\cdot 226$	50	178	-322
. 596	3230	- 226	- 5.52	- 402	18.30	-194	- 746	$\cdot 2.38$	430	-176	-330
. 676	320	-224	. 604	$\cdot 450$	180	-192	$\cdot 778$		0	176	. 333°
.756	3130	- 224	-654	. 496	$17 \quad 30$	$\cdot 192$	-810-	. 258	$3 \quad 30$	170	$\cdot 346$
.834	310	2	$\cdot 704$	40	170	-190	-840	- 266	310	176	-352
-910	$30 \quad 30$	-220	$\cdot 754$. 582	1630	-190	870	$\cdot 274$	230	-176	- $35{ }^{8}$
14.986	30	220	- 802	-624	160	190	898	-280	0	176	362
15.060	2930	. 218	-850	. 666	$15 \quad 30$	- 188	-926	-284	$1-30$	$\cdot 176$	- 3 (6)
$\cdot 134$	290	- 216	-898	706	100	188	-954	- 288	0	176	308
.206	$28 \quad 30$	- 216	-946	- 744	$14 \quad 30$	-186	23.980	- 290	0-30	- 176	$\cdot 370$
$\cdot 278$	280	214	22.992	- 780	140	-185	24.006	17.200	0	$17 \cdot 1,6$	$\underline{24 \cdot 372}$
$\cdot 348$	2730	212	$23 \cdot 038$. 816	1330	-186	. 032				
	2	- 212	-084	. 850	130	-184	. 056				
$\cdot 484$	2630	. 210	- 128	. 884	1230	$\cdot 184$.078				
15.550	260	17.210	$23 \cdot 172$	16.916	120	$17 \cdot 184$	$24 \cdot 100$				

9 Map.
Projection: Polyconic.
Scale 1 inch $=2 \frac{2}{3}$ miles.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{2}$ Degree Squares.

10 Map.
Projection: Polyconic.
Scale 1 inch = 3 miles.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{2}$ Degree Squares.

Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{2}$ Degree Squares,

\boldsymbol{p}	Latitude	m	q	p	Latitude	m	q	p	Latitude		
$6 \cdot 723$	$40^{\circ} \quad 0^{\prime}$			7.882	$26^{\circ} 0^{\prime}$		11.767	8. 574	$12^{\circ} \quad 0^{\prime}$	m	q
. 772	3930	8.741 .740	11.042	. 915	$25 \quad 30$	$8 \cdot 722$	11.767	$\begin{array}{r}\text {. } 589 \\ \hline\end{array}$	11.30	8.709	12.227
-820	390	$\cdot 740$. 071	-948	$25 \quad 0$	$\cdot 722$. 789	. 604	110	$\cdot 709$	-237
. 868	$38 \quad 30$	740	-101	7.980	24 30	721	-810	. 618	$10 \quad 30$	$\cdot 709$	- 247
-915	$38-0$	$\cdot 739$	- 129	8-011	24.0	720	.831	-632	10 0	$\cdot 709$	-257
$6 \cdot 962$	$37 \quad 30$	$\begin{array}{r}.738 \\ \cdot \\ \hline\end{array}$	-158	$\cdot 042$	23 30	'720	. 852	. 645	930	$\cdot 708$	$\cdot 266$
7.008	370	$\cdot 737$		- 072	230	-719	$\cdot 872$	-657	90	$\cdot 708$	-275
.053	$36 \quad 30$	-737	-214	-101	$22 \quad 30$	$\cdot 719$	$\cdot 892$. 669	830	$\cdot 708$	-283
-009	$36 \quad 0$	$\cdot 736$	- 242	-130	220	718	-911	. 679	80	708	-291
143	35 3C	$\cdot 735$	$\cdot 270$	-158	2130	718	-931	- 690	7.30	707	-298
$\cdot 187$	$35-0$	'735	-298	- 186	210	.717	-949	- 699	70	$\cdot 707$	-305
. 230	$34 \quad 30$	$\cdot 734$	- 325	$\cdot 213$	$20 \quad 30$	-717	- 967	- 708	630	$\cdot 707$	-31
$\cdot 273$	340	$\cdot 733$	'351	-239	$20-0$. 716	11.985	$\cdot 716$	60	-707	$\cdot 317$
- 316	$33 \quad 30$	-732	'378	. 265	1930	-716	$12 \cdot 003$	724	530	$\cdot 707$	-323
-358	330	732	$\cdot 405$	- 290	190	$\cdot 715$	- 019	-735	50	707	- 328
- 399	3230	735	431	$\cdot 314$	$18 \quad 30$	715	.036	. 737	4. 30	$\cdot 707$.333
-439	320	730	$\cdot 457$	- 33^{8}	180	$\cdot 714$	-052	743	40	$\cdot 706$	$\cdot 336$
$\cdot 479$	3130	$\cdot 730$. 483	$\cdot 361$	$17 \quad 30$	'714	-068	748	330	$\cdot 706$	- 340
. 519	$31-0$	$\cdot 729$	- 508	$\cdot 384$	170	713	084		30	- 706	343
- 55^{8}	$30 \quad 30$	$\cdot 728$	- 533	-406	1630	$\cdot 713$	- 099	. 756	230	. 706	$\cdot 346$
- 596	$30 \quad 0$	728	- 558	'427	16 0	713	-114	- 759	20	706	- 349
. 634	2930	. 727	$\cdot 582$	$\cdot 447$	15 30	712	- 128	$\cdot 761$	130	706	-350
. 67 I	290	726	-606	$\cdot 467$	150	712	-142	$\cdot 763$	0	$\cdot 706$	-352
- 708	$28 \quad 30$	$\cdot 726$. 631	-487	14. 30	715	- 155	$\cdot 764$	0	. 706	-353
-744	28 0	\cdots	. 654	- 506	140	711	-16	8.764	0	8.706	$12 \cdot 353$
-779	$27 \quad 30$	$\cdot 725$. 678	- 524	13 30	711	181				
.814	270	$\cdot 724$	700		130	710	-193				
. 849	$26 \quad 30$	$\cdot 723$	$\cdot 723$	-558	1230	$\cdot 710$	$\cdot 205$				
7.882	$26 \quad 0$	$8 \cdot 723$	$11 \cdot 7+5$	8.574	120	$8 \cdot 710$	$12 \cdot 216$				

12 Map.
Projection: Polyconic.
Scale 1 inch $=4$ miles.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of $\frac{1}{2}$ Degree Squares.

Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of 1 Degree Squares.

p	Latitude	m	q	p	Latitude	m	9	p	Latitude	nı	9
6.632	40 39	$8 \cdot 623$	$10 \cdot 907$	7.775 .840	$\begin{aligned} & 26^{\circ} \\ & 25 \end{aligned}$	$8 \cdot 604$	11.615	8.458 .487	$1{ }^{12}$	8.591	12.0 .6
$\cdot 727$	39 38	.621	10.907 10.064		24	. 603	. 660	. 415	10	$\cdot 591$. 086
.821 6.913	38 37	. 620	11.021	$\cdot 902$ 7.962	24	. 601	$\cdot 701$. 539	9	. 590	- 104
	36	. 618	. 075	8.019	23	. 600	740	-562	8	. 590	. 120
+	35	. 617	-131	. 074	21	- 599	-777	. 581	7	589	134
	$3 \cdot 4$.615	$\cdot 184$	- 127	20	598	. 13	- 598	6		
$\cdot 258$	33	.614	-237	-177	19	- 597	$\cdot 848$.613	5	8	158 $\cdot 167$
$\cdot 338$	32	.613	-289	- 225	18			. 624	+		
$\cdot 417$	31	.615	- 339	$\cdot 270$	17	'596	$\cdot 912$.633	3		174 180
$\cdot 493$	30	. 61	$\cdot 389$	-312	16	595	-942	-640	2		
- 567	29	. 609	'437	- 353	15	594	. 970	. 64	1		5
. 639	28	-607		390	14	- 593	11.907	$8 \cdot 645$	0	R. 588	$12 \cdot 185$
. 708	27	. 606	. 530	425	13	- $5 \cdot 593$	12.022				
$7 \cdot 775$	26	$8 \cdot 605$	11.575	8. 458	12	$8 \cdot 592$	12.045				

14 Map.
Projection: Polyconic.
Scale 3/2,000,000 or 1 inch $\fallingdotseq 10.522$ miles.
Lengths in inches along Parallel $=p$, Meridian $=m$, Diagonal $=q$, of 2 Degree Squares.

Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares.
Also distances from central Meridian $=X$ and arc-versines $=\mathrm{Y}$ of corners of 2 Degree Squares.

Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares. Also distances from central Meridian $=\mathrm{X}$ and arc-versines $=\mathrm{Y}$ of corners of 2 Degree Squares.

- Perceniage of error of lotigiturle on farlous parallels.

Projection: Modified Secant Conical*. (Computed for latitudes $44^{\circ}-8^{\circ}$).

Scale 3/4,000,000.

Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Sqrares. Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 2 Degree Squares.

Longitude			2°		$4^{\text {c }}$		6°		8°		10°		12°		Long.
m	q	Lat.	$\mathbf{X}=\boldsymbol{p}$	Y	X	Y	X	Y	X	Y	\mathbf{X}	Y	X	Y	Lat.
		48°	$4 \cdot 682$	0.035	9.363	0.141	14.042	$0 \cdot 318$	18.718	0.56.4	$23 \cdot 3^{89}$	0.881	28.055	1-267	48°
6. 564	8-091	46	4.682 .781	- 0.035	9.361 .561	-144	${ }^{4} \cdot 33^{8}$	- 324	19.113	. 576	$23 \cdot 883$	-900	$28 \cdot 647$	- 294	48
. 562	-148	4	. 880	-036	. 758	-147	. 635	. 331	19.508 19.903	. 588	$24 \cdot 377$	-918	29.239	$\cdot 32 \mathrm{I}$	44
$\cdot 560$	- 205	42		.038	$\underline{9.956}$		14.931	-337	$19 \cdot 903$. 600	24.870	$\cdot 937$	29.831	34^{8}	42
$\cdot 557$. 264	40	4.979 5.077	.038	($\begin{gathered}9.956 \\ 0.154\end{gathered}$	-153	14.227	-344	$20 \cdot 298$. 611	$25 \cdot 363$	-955	$30 \cdot 423$. 775	40
- 5.56	- 322	38	$\begin{array}{r}5 \cdot 077 \\ \cdot 176 \\ \hline\end{array}$	-039	- 3 - 3	-156	[.523	-351	20.692	. 623	$25 \cdot 856$. 974	3I-015	$\cdot 402$	38
- 553	392	36			548	-159	15.819	-358	2I-087	. 635	26.349	$0 \cdot 993$	31.607	429	36
-551	4	34	$\cdot \cdot .275$.0.31	$\begin{array}{r} \\ \cdot \\ \cdot 745 \\ \hline\end{array}$	-162	16.115	-364	21-48I	. 647	$26 \cdot 842$	1.011	$32 \cdot 198$	-456	34
- 549	502	32	- 472	-0+2	10.943	-165	- 411	-371	$21 \cdot 875$. 659	$27 \cdot 335$. 030	$32 \cdot 789$. 483	32
. 546	. 564	30	-571	$\cdot{ }^{-042}$	11-140	$\cdot 167$	16.706	$\cdot 377$	$22 \cdot 269$. 670	27.827	-0,4	$33 \cdot 380$	509	30
. 545	. 627	28	. 571	-042	$11 \cdot 140$ $\cdot 337$	$\cdot 170$	17.002	-384	22.663	. 683	$28 \cdot 320$	- 066	$33 \cdot 969$. 536	28
. 543	. 690	$24 i$. 768	-0+4	$\begin{array}{r}337 \\ .534 \\ \hline\end{array}$	${ }^{17} 7$	+ 298	- 390	23.057	. 694	$\xrightarrow{28.812}$	-085	34. 560	-562	26
$\cdot 541$	'75.3'	24	. 866	- 044		$\cdot 177$	- 593	- 398	$23 \cdot 451$	707	29'304	-104	35.150	589	24
- 540	. 819	22	5.965	-045	11.928	- 1 So	17.888	-404	$23 \cdot 845$	-718	29'796	122	35.740	. 616	22
- 538	. 882	20	6.063	-045	$12 \cdot 125$	-183	$18.18{ }_{+}$	-411	$24 \cdot 238$	-731	$30 \cdot 288$	-141	$36 \cdot 330$. 643	20
- 537	8.949	18	-161	-047	322	-185	-479	417	$2+\cdot 63^{2}$	-7t ${ }^{2}$	30'779	- 159	$36 \cdot 920$	670	14
.535 .534	9.017 .083	16	- 260	. 048	518	-189	$18 \cdot 774$	-425	25.025	-754	31.271	- 178	37.509	. 696	16
-534	. 083	14	. 358	. 048	715	-191	19.069	-431	25.419	. 766	31-762	-196	38.099	-722	14
-533	- 150	12			$12 \cdot 912$	-194	$\cdot 364$	$\cdot 438$	25.812	$\cdot 778$	$32 \cdot 254$	-215	38.688	749	12
. 532	- 218	10	$\begin{array}{r}\cdot \\ + \\ \hline 55 \\ \hline\end{array}$. 0.5	$13 \cdot 109$	$\begin{array}{r}194 \\ -198 \\ \hline\end{array}$. 659	-444	26.205	-790	$32 \cdot 745$	-234	39.277	. 776	10
'531	- 288	8	. 653	. 050	- 305	. 200	19.954	-451	$26 \cdot 598$. 801	$33 \cdot 237$	-252	$39 \cdot 867$	802	8
. 531	$\cdot 359$	6				' 203	20.249	- 4.57	$26 \cdot 991$. 813	33'728	- 270	$40 \cdot 457$. 829	6
. 5310 .530	.428 .500	6 4	$\begin{array}{r}.752 \\ .850 \\ \hline\end{array}$.051	. 698	. 206	$\begin{array}{r}\text { - } 5+4 \\ \hline\end{array}$	-464	$27 \cdot 385$. 825	34-219	- 289	41.046	. 855	4
530	$\begin{array}{r}\cdot 500 \\ \hline 9.570\end{array}$	2	6.948	.052	13.895	- 209	$20 \cdot 839$. 470	27.778	. 837	34.710	- 307	$4 \mathrm{4} \cdot 635$. 881	2
	9.570	0	7.047	0.053	14.092	0.213	21-134	0.478	$28 \cdot 171$	0.849	$35 \cdot 201$	1.326	$42 \cdot 224$	1-907	0

20 Map.
Projection: Modified Secant Conicalt. Scale 1 inch $=28$ miles. (Computed for latitudes $40^{\circ}-8^{\circ}$)
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares.
Also distances from central Meridian $=\mathrm{X}$ and arc-versines $=\mathrm{Y}$ of corners of 2 Degree Squares.

Loncriturle			2°		4°		6^{8}		8°		10°		12°		Long.
m	q	Lat.	$\mathrm{X}=\mathrm{p}$	$\overline{\mathrm{Y}}$	X	Y	X	Y	X	$\overline{\mathrm{Y}}$	X	Y	X	Y	Lat.
4.927	$6 \cdot 290$	40°	3. 577	0.027	7.752	0.108	I 1 - 626	O. 245	15.498	0.434	$19 \cdot 367$	0.680	$23 \cdot 232$	0.978	40°
$\begin{array}{r}4.927 \\ \hline\end{array}$	$\begin{array}{r}\text { - } 331 \\ -375 \\ \hline\end{array}$	38	$3 \cdot 9+5$	-027	7.890	110	11.833	- 249	15.775	$\cdot 442$	19.712	-692	$23 \cdot 6.6$	0.995	38
. 923	. 375	36	4.015	-028	8.029	110	$12 \cdot 0$	- 254	$16 \cdot 050$	$\cdot 450$	20.057	. 704	$24 \cdot 059$	-013	36
'922	$\cdot 418$	34 32	-083	-029	- 167	-114	. 248	- 258	327	-458	$20 \cdot 402$	716	24.474	. 030	34
. 920	. 461	32	1.53	-029	-304	- 116	- 455	- 262	-602	-465	30.746	728	$2+.887$	-048	32
919	504	30	- 222	-0,30	- 44^{2}	18	662	- 266	16.878	-473	$21 \cdot 090$	740	$25 \cdot 301$. 065	30
915	-550	28	- 200	-030	. $5^{\text {¢ }}$	120	$12 \cdot 869$	-271	$17 \cdot 153$	481	$2 \mathrm{I} \cdot 435$	$\cdot 752$	25.713	. 082	28
.917	. $59+4$	26	- 360	-031	.718 .856	122	13.075	- 275	430	-489	$2 \mathrm{I} \cdot 781$	-764	26-127	. 099	26
$\cdot 914$. 638	24	- +29	O3I	. 856	-124	281	$\cdot 279$	705	49^{6}	22.125	$\cdot 776$	26. 539	. 117	24
'913	. 683	22	+97	-032	8.993	- 126	- 48	$\cdot 283$	17.981	-504	$22 \cdot 459$	-788	26.953	135	22
-912	.730	180	. 566	-032	9.131	-128	. 695	-288	$18 \cdot 256$	$\cdot 512$	22.813	- Guu	$27 \cdot 366$	- 152	20
, 912	$\cdot 777$	18	. 635	.033	- 270	$\cdot 130$	13.902	- 293	531	-520	23.157	. 812	$27 \cdot 778$	-169	18
-91I	. 824	16	. 704	'033	407	$\cdot 1.32$	14.109	- 297	18.807	'528	23.501	. 824	28-191	[196	16
$\cdot 910$. 871	14	$\cdot 773$.033	-545	-134	-314	$\cdot 301$	19.081	535	23.845	.836	28.603	- 204	14
.909	.919	12	841	-0,34	682	${ }^{1} 36$	521	. 305	$\bigcirc 357$. 54.3	$24 \cdot 189$	-848	29.016	- 222	12
	- 6.968	10 8	. 911	.034	.819	$\cdot 138$	$\cdot 727$	- 110	. 632	-551	24.533	- 860	29.429	- 239	10
- 909	7.016	8	4.979 $5 \cdot 048$	-035	9.958	-140	14.934	-314	$19 \cdot 907$	- 559	$24 \cdot 877$. 872	29.841	-256	8
-907	-005	6	$5 \cdot 048$. 0.35	$10 \cdot 095$	-142	15.141	-319	$20 \cdot 182$	- 566	25.221	-884	$330 \cdot 254$	$\cdot 273$	6
. 907	. 115	4	-117	-035	233	144	$\cdot 346$	$\cdot 323$	457	- 574	$25 \cdot 565$. 896	$30 \cdot 666$	290	4
$4 \cdot 907$	7.165	2	86	$\cdot 036$	$\cdot 370$. 145	-5.53	- 327	20.733	- 582	25.907	-908	$31 \cdot 078$	- 308	2
4 907		0	5.255	0.037	10. 507	0.146	$15 \cdot 760$	0.331	21-009	$0 \cdot 590$	$26 \cdot 251$	0.920	31.490	I-326	0

- For Percentage of error of longitude on various parallels, see Note for 17 Map.
\uparrow Percentage of error of longitude on various parallels.

Latitude	40°	$35^{\circ} 8^{\prime}$	$23^{\circ} 40^{\prime} 51^{\prime \prime}$	$12^{\circ} 30^{\prime}$	8°
Error	2.3	0	$1 \cdot \theta$	0	1.8

Projection: Modified Secant Conical ${ }^{*}$
(Computed for latitudes $40^{\circ}-8^{\circ}$)

Scale 1/2,000,000. or 1 Inch $=31.566$ mliss

Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$, of 2 Degree Squares. Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 2 Degree Squares.

Longitude			2°		$4{ }^{\text {o }}$		6°		8°		10°		Long.
m	q	Lat.	$\mathrm{X}=\boldsymbol{p}$	Y	X	Y	X	Y	X	Y	X	Y	Lat.
$\begin{array}{r}4.370 \\ .368 \\ \hline\end{array}$	5.580 .616	$\begin{aligned} & 40^{\circ} \\ & 38 \\ & 38 \end{aligned}$	3.439 .500 .561	0.024 .024 .025	$\begin{array}{r}6.876 \\ -6.999 \\ \hline .122\end{array}$	0.096 .098 .100	$\begin{array}{r} 10.313 \\ .496 \\ \hline 20 \end{array}$	0.217 221 .225	13.748 13.993 14.237	0.385 .392	17.179 17.485 17.791	$\begin{array}{r} 0.602 \\ .613 \\ \hline 1 \end{array}$	$\begin{aligned} & 40^{\circ} \\ & 38 \end{aligned}$
. 367	. 655		561	. 025	$7 \cdot 122$	- 100	. 680	-225	14.237	399	17.791	. 623	36
$\cdot 366$. 693	34.	. 622	. 025	$\cdot 24$	-101	10.864	$\cdot 228$	-483	407	18.098	. 635	34
. 364	. 731	32	-684	-026	-366	-103	11.048	$\cdot 232$	- 727	$\cdot 413$	18.403	. 646	32
. 363	$\cdot 769$	30	$\cdot 745$. 026	$\cdot 489$	- 105	$\cdot 231$. 236	14.971	$\cdot 420$	18.708	.656	30
36	.810	28	. 806	-026	.611	-106	415	-240	15.216	$\cdot 427$	19.014	607	28
361	. 849	26		. 027	$\cdot 733$	-108	59	- 244	$\cdot 4$	43	320	67	26
359	. 888	24	'928	- 027	-856	-110	781	-247	$\cdot 705$	44	. 625	. 688	24
358	. 928	29	3.989 4.050	O28	7.977	-112	II 196	251	5.949	44	19.931	-698	2
	5.970	20 18	4.050	-028	$\begin{array}{r}7.100 \\ .223 \\ \hline\end{array}$.114 .116	12.148	-255	16.194	-454	$20 \cdot 2$	710	20
357	$6 \cdot 012$. 116	$\cdot 331$	-260	$\cdot 438$	461	20.541	721	18
356	053	16	173	- 029	344	- 117	515	. 26	. 68	$\cdot 468$	$20 \cdot 846$	731	16
355	. 095	$\begin{array}{r}14 \\ 12 \\ \hline 12\end{array}$	- 234	-029	4.467	-119	. 697	-267	16.92	$\cdot 474$	$21 \cdot 1$	74	14
354	137		294	. 030	589	21	12.881	-271	17-170	482	21.456	752	12
354	$1{ }^{181}$	10	35	.030	$\cdot 710$	-12	13.063	$\cdot 27$	41	48	21.7	763	10
154	224	8	. 417	$\cdot 031$. 833	-124	- 247	-279	-659	$\cdot 49$	22.067	$\cdot 773$	8
35.3	26		478	.031	8.955	-126	-430	-283	17.902	-502	$\cdot 372$	785	6
35.3		4	539	031	0.077	$\cdot 128$. 613	-286	19.146	509	677		4
$4 \cdot 353$	$6 \cdot 355$	2		-032		. 29	796	-290		-516	81		2
		0	\%	. 32	321	0.130	.960	0.294	634	0.523	$23 \cdot 286$		0
Longitude			12		14		16°		18°		20		$\begin{aligned} & 40^{\circ} \\ & 38 \\ & 36 \\ & \hline \end{aligned}$
$\begin{array}{r} 4370 \\ \hline \end{array}$	$\begin{array}{r}5 \cdot 580 \\ .616 \\ \hline 65\end{array}$	$\begin{aligned} & 38 \\ & 36 \end{aligned}$	$\begin{aligned} & 20 \cdot 608 \\ & 20 \cdot 975 \\ & 21 \cdot 342 \end{aligned}$	$\begin{array}{r} 0.868 \\ .883 \\ .898 \end{array}$	$\begin{aligned} & 24 \cdot 032 \\ & 24 \cdot 460 \\ & 24 \cdot 888 \end{aligned}$	$\begin{aligned} & 1.180 \\ & 1.201 \\ & 1.222 \end{aligned}$	$\begin{aligned} & 27 \cdot 452 \\ & 27 \cdot 94 \mathrm{I} \\ & 28 \cdot 430 \end{aligned}$	$\begin{aligned} & \text { I. } 54 \mathrm{I} \\ & \text { I. } 568 \\ & \text { I. } 596 \end{aligned}$	$\begin{aligned} & 30.866 \\ & \text { 3• } 416 \\ & \text { 31. } 966 \end{aligned}$	$\begin{array}{r} 1.950 \\ 1.984 \\ 2.019 \\ \hline \end{array}$	$\begin{aligned} & 34 \cdot 274 \\ & 34 \cdot 885 \\ & 35 \cdot 495 \end{aligned}$	$\begin{aligned} & 2.407 \\ & 2.449 \\ & 2.492 \end{aligned}$	
367													
366	$\cdot 69$	$\begin{aligned} & 34 \\ & 32 \\ & 30 \end{aligned}$	21.710	.913	$\begin{aligned} & 25.316 \\ & 25.74 \dot{4} \\ & 25.172 \end{aligned}$	$\begin{aligned} & 1 \cdot 244 \\ & 1.264 \\ & 1.285 \end{aligned}$	$\begin{aligned} & 28.919 \\ & 29.407 \\ & 29.896 \end{aligned}$	$\begin{aligned} & 1.624 \\ & 1.651 \\ & 1.678 \end{aligned}$	$\begin{aligned} & \hline 32 \cdot 515 \\ & 33 \cdot 065 \\ & 33 \cdot 614 \end{aligned}$	$\begin{aligned} & 2 \cdot 055 \\ & 2 \cdot 089 \\ & 2 \cdot 123 \end{aligned}$	$\begin{aligned} & 36 \cdot 106 \\ & 36 \cdot 716 \\ & 37 \cdot 326 \end{aligned}$	$\begin{aligned} & 2.536 \\ & 2.578 \\ & 2.621 \end{aligned}$	$\begin{aligned} & 34 \\ & 32 \\ & 30 \end{aligned}$
33_{4}	$\cdot 731$		22.07	-930									
30	. 760		$22 \cdot 443$	-945									
-362	. 810	$\begin{aligned} & 28 \\ & 28 \\ & 24 \end{aligned}$	22.809	-960	$26 \cdot 599$	1.306	$30 \cdot 3^{88}$	1-706	$34 \cdot 163$	$2 \cdot 150$	935	2.664	$\stackrel{2}{2}$
362	-810		23	-975	27.02	1-327	$30 \cdot 872$	$1 \cdot 733$	34.712	$2 \cdot 193$	38. 545	$2 \cdot 706$	26
	849		$23 \cdot 542$	0.990	27.454	1.348	31.361	$1 \cdot 761$	35. 261	$2 \cdot 228$	39.154	$2 \cdot 749$	24
$\cdot 359$	-888	22	23	1.007	27.881	$1 \cdot 369$	31.848	$1 \cdot 787$	35.809	2. 262	39	2.791	22
$\cdot 35$	928	20	24	22	28.	I-390	$32 \cdot 33^{6}$	1-815	36.358	$2 \cdot 297$	40-373	2.835	20
357	$5 \cdot 970$	18	24.	-37	$28 \cdot 735$	1.411	32.824	$1 \cdot 843$	$36 \cdot 906$	$2 \cdot 332$	$40 \cdot 982$	2.878	${ }^{18}$
-357	6.012	16	25.		29.162	$\mathrm{I}^{\prime} 4{ }^{1}$	33.312	870	-45.	2. 366	41.590	${ }^{20}$	16
- 356	-053	14	25.3	. 067	29.589	1.453	$33 \cdot 79$	I.897	$38 \cdot 003$	$2 \cdot 400$		2.963	14.
. 355	.095	12	25.738	-084	30.016	1.474	34-287	1.925	$38 \cdot 55{ }^{\text {I }}$	2.435	$42 \cdot 806$	3.006	12
$\cdot 354$	137	10	26.	. 099	$30 \cdot 4$	995	34.774	1.95	39.099	2.47	43.416	5	10
354	- 181	8	26.470	-14	$30 \cdot 869$	1. 516	$35 \cdot 26$	1.980	$39 \cdot 647$	$2 \cdot 505$	44.025	3.091	8
$3 \underline{5}$	$\cdot 224$	6	26.836	-129	31-295	1.537	$35 \cdot 749$	2.007	$40 \cdot 195$	2.539	$44 \cdot 633$	3.134	6
353	267	4		. 145	31.722	1-558	36.236	2.034	$40 \cdot 743$	2.57	$45 \cdot 24 \mathrm{~T}$	3.177	4
. 353	. 355	2	27*567	-161	$3^{2 \cdot 148}$	$1 \cdot 577$	$36 \cdot 723$	2.061	41.290	2.608	$45 \cdot 850$	3.219	$\stackrel{2}{2}$
$4 \cdot 353$	Ј. 355	0	27-933	1-176	32.575	r-599	37-210	2.089	41.838	2.643	$46 \cdot 458$	3. 262	
Longitu			22°		$24{ }^{\circ}$		26°		28°		30		
$\begin{array}{r}4.370 \\ \hline .368 \\ \hline\end{array}$	$\begin{array}{r}5.580 \\ .616 \\ \hline\end{array}$	$\begin{aligned} & 40^{\circ} \\ & 38 \\ & 36 \end{aligned}$	$\begin{aligned} & 37 \cdot 676 \\ & 38 \cdot 347 \\ & 39 \cdot 018 \end{aligned}$	2.9112.9623.015	$41 \cdot 070$41.802$42 \cdot 533$	$\begin{aligned} & \mathbf{3} \cdot 463 \\ & \mathbf{3} \cdot \mathbf{5 2}^{2} \\ & \mathbf{3} \cdot 986 \end{aligned}$	$\begin{aligned} & 44 \cdot 456 \\ & 45 \cdot 248 \\ & 46 \cdot 040 \end{aligned}$	$\begin{aligned} & 4 \cdot 063 \\ & 4 \cdot 54 \\ & 4 \cdot 207 \end{aligned}$	$\begin{aligned} & 47 \cdot 833 \\ & 48 \cdot 685 \\ & 49 \cdot 537 \end{aligned}$	$\begin{aligned} & 4.709 \\ & 4.793 \\ & 4.877 \end{aligned}$	$\begin{aligned} & 51 \cdot 201 \\ & 52 \cdot 113 \\ & 53 \cdot 025 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.404 \\ & 5.500 \\ & 5.596 \end{aligned}$	$\begin{aligned} & 40^{\circ} \\ & 38 \\ & 36 \end{aligned}$
367	655	36	39.689	$\begin{aligned} & 3.067 \\ & 3.118 \\ & 3.170 \end{aligned}$	$\begin{aligned} & 43 \cdot 264 \\ & 43 \cdot 995 \\ & 44 \cdot 726 \end{aligned}$	$\begin{aligned} & 3.648 \\ & 3.710 \\ & .777 \end{aligned}$	$\begin{aligned} & 46 \cdot 831 \\ & 47 \cdot 623 \end{aligned}$	$\begin{aligned} & 4 \cdot 280 \\ & 4 \cdot 352 \\ & 4 \cdot 424 \end{aligned}$	$50 \cdot 389$$51 \cdot 241$$52 \cdot 092$	$\begin{aligned} & 4.961 \\ & 5.045 \\ & 5.129 \end{aligned}$	$\begin{aligned} & 53^{\bullet} 937 \\ & 54 \cdot 848 \end{aligned}$	$\begin{aligned} & 5 \cdot 692 \\ & 5 \cdot 789 \\ & 5 \cdot 885 \end{aligned}$	$\begin{aligned} & 34 \\ & 32 \\ & 30 \\ & \hline \end{aligned}$
- 366	. 693	3230	$39 \cdot 69$$40 \cdot 36$41.030										
364	$\cdot 731$						48.414				55.759		
363	$\cdot 769$	$\begin{aligned} & 28 \\ & 26 \\ & 24 \end{aligned}$	$\begin{aligned} & 41 \cdot 700 \\ & 42 \cdot 370 \\ & 43 \cdot 040 \end{aligned}$	$\begin{aligned} & 3.222 \\ & 3.273 \\ & 3.325 \end{aligned}$	$\begin{aligned} & 45 \cdot 457 \\ & 46 \cdot 187 \\ & 46 \cdot 917 \end{aligned}$	$\begin{aligned} & 3.833 \\ & \mathbf{3 . 8 9 4} \\ & \mathbf{3} .956 \end{aligned}$	$\begin{aligned} & 49.205 \\ & 49.995 \\ & 50.786 \end{aligned}$	$\begin{aligned} & 4.496 \\ & 4.569 \\ & 4.641 \end{aligned}$	$\begin{aligned} & 52 \cdot 943 \\ & 53 \cdot 793 \\ & 54 \cdot 64 \end{aligned}$	$\begin{aligned} & 5.212 \\ & 5.296 \\ & 5.380 \end{aligned}$	$\begin{aligned} & 56 \cdot 670 \\ & 57 \cdot 5^{8 \mathrm{I}} \\ & 58.49 \mathrm{r} \end{aligned}$	$\begin{aligned} & 5 \cdot 991 \\ & 6 \cdot 0.977 \\ & 6 \cdot 173 \end{aligned}$	$\begin{aligned} & 28 \\ & 26 \\ & 24 \end{aligned}$
$\cdot 362$	810												
361	849												
359	888	$\begin{aligned} & 22 \\ & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \cdot 710 \\ & 44.379 \\ & 45.049 \end{aligned}$	$\begin{aligned} & 3.377 \\ & 3.429 \\ & 3.48 \mathrm{y} \end{aligned}$	$\begin{aligned} & \hline 47 \cdot 647 \\ & 48 \cdot 777 \\ & 49 \cdot 107 \end{aligned}$	$\begin{aligned} & 4.017 \\ & 4.079 \\ & 4.1 .41 \end{aligned}$	$\begin{aligned} & 51 \cdot 576 \\ & 52 \cdot 366 \\ & 5.3 \cdot 155 \end{aligned}$	$\begin{aligned} & 4 \cdot 713 \\ & 4.785 \\ & 4.85^{3} \end{aligned}$	$\begin{aligned} & 55 \cdot 49+ \\ & 55 \cdot 3+4 \\ & 57 \cdot 194 \end{aligned}$	$\begin{aligned} & 5.46+ \\ & 5.547 \\ & 5.631 \end{aligned}$	$\begin{aligned} & 59.491 \\ & 60 \cdot 31 \mathrm{I} \\ & 6 \mathrm{II} \cdot 22 \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & 6.269 \\ & 6.365 \\ & 6.461 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \\ & 18 \\ & \hline \end{aligned}$
-35	. 928												
357	5690												
$\cdot 357$	6.012.053.093	$\begin{aligned} & 18 \\ & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 45 \cdot 718 \\ & 46 \cdot 387 \\ & 47 \cdot 0^{8} 6 \end{aligned}$	$\begin{aligned} & 3.532 \\ & 3.584 \\ & 3.636 \end{aligned}$	$\begin{aligned} & 49 \cdot 836 \\ & 50 \cdot 560 \\ & 51 \cdot 295 \end{aligned}$	$\begin{aligned} & 4.202 \\ & 4.263 \\ & 4.325 \end{aligned}$	$\begin{aligned} & 53 \cdot 945 \\ & 54 \cdot 735 \\ & 55 \cdot 524 \end{aligned}$	$\begin{aligned} & 4.930 \\ & 5 \cdot 001 \\ & 5 \cdot 074 \end{aligned}$	$\begin{aligned} & 58 \cdot 0.3 \\ & 58 \cdot 897 \end{aligned}$$59 \cdot 742$	$\begin{aligned} & 5 \cdot 715 \\ & 5 \cdot 798 \\ & 5.882 \end{aligned}$	$\begin{aligned} & 62 \cdot 130 \\ & 63 \cdot 039 \\ & 6.949 \end{aligned}$	6.557 6.653 6.740 6.84	$\begin{aligned} & 18 \\ & 14 \\ & 12 \end{aligned}$
- 356													
$\cdot 355$	$\cdot 095$												
354	$\cdot 137$	$\begin{array}{r} 10 \\ 8 \\ 6 \end{array}$	$\begin{aligned} & 47 \cdot 725 \\ & 48 \cdot 39+ \\ & 40 \cdot 062 \end{aligned}$	$\begin{aligned} & 3.687 \\ & 3.739 \\ & 3.791 \end{aligned}$	$\begin{aligned} & 52 \cdot 024 \\ & 52 \cdot 753 \\ & 53 \cdot 482 \end{aligned}$	$\begin{aligned} & 4.986 \\ & 4.448 \\ & 4.510 \\ & \hline \end{aligned}$	$\begin{aligned} & 56 \cdot 313 \\ & 57 \cdot 103 \\ & 57 \cdot 892 \end{aligned}$	$\begin{aligned} & 5.146 \\ & 5.218 \\ & 5.290 \end{aligned}$	$\begin{aligned} & 60.592 \\ & 61.441 \\ & 62.290 \end{aligned}$	$\begin{aligned} & 5.966 \\ & 5 \cdot 040 \\ & 6.13, \end{aligned}$	$\begin{aligned} & 64 \cdot 858 \\ & 65 \cdot 767 \\ & 66.675 \end{aligned}$	$\begin{aligned} & 6 \cdot 8+5 \\ & 6 \cdot 9+1 \\ & 7 \cdot 037 \\ & \hline \end{aligned}$	$\begin{gathered} 101 \\ 8 \\ 6 \\ 6 \end{gathered}$
354	-181												
354	$\cdot 324$												
353	$\cdot 267$	0	$\begin{aligned} & 49^{9} 73^{1} \\ & 50^{\circ} 400 \\ & 5^{1} .068 \end{aligned}$	$\begin{aligned} & 3.842 \\ & 3.894 \\ & 3.945 \end{aligned}$	$\begin{aligned} & 54 \cdot 211 \\ & 54 \cdot 940 \\ & 55 \cdot 669 \end{aligned}$	$\begin{aligned} & 4.571 \\ & 4.632 \\ & +69.3 \end{aligned}$	$\begin{aligned} & 58.681 \\ & 59.470 \\ & 60.259 \end{aligned}$	$\begin{aligned} & 5.362 \\ & 5.434 \\ & 5.506 \end{aligned}$	$\begin{aligned} & 63.139 \\ & 63.988 \\ & 64.837 \end{aligned}$	$\begin{aligned} & 6 \cdot 216 \\ & 6 \cdot 300 \\ & 6 \cdot 38+ \end{aligned}$	$\begin{aligned} & 67.584 \\ & 69.493 \\ & 69.402 \end{aligned}$	$\begin{aligned} & 7.13 .3 \\ & 7.229 \\ & 7.325 \end{aligned}$	420
	6.312												
4.353	$6 \cdot 355$												

- For Percentage of error of longitude on various parallels, see Note for 20 Map .

Projection: Modified Secant Conical*. (Computed for latitudes $44^{\circ}-\mathbf{8}^{\circ}$)

Lengthe in inchee alqng Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares.
Also distances from central Meridian $=\mathbf{X}$ and arc-versines $=\mathbf{Y}$ of corners of 2 Degree Squares.

Longitude			2°		4°		6		8°		10		12°		Long.
m	$\underline{9}$	Lat.	$\mathbf{X}=\boldsymbol{p}$	Y	X	I	X	\mathbf{Y}	X	Y	\mathbf{x}	I	X	Y	Lat.
$4 \cdot 376$ $-\quad 375$.973	$\begin{array}{r}5 \cdot 394 \\ -432 \\ \hline\end{array}$	48° 46 44 4	$\begin{array}{r}3 \cdot 121 \\ \cdot 187 \\ \cdot 253 \\ \hline r\end{array}$	$\begin{array}{r}0.023 \\ .023 \\ .024 \\ \hline-.025\end{array}$	$\begin{array}{r}6 \cdot 242 \\ .374 \\ \cdot 505 \\ \hline\end{array}$	$\begin{array}{r} 0.094 \\ .096 \\ .098 \end{array}$	$\begin{array}{r} 9.361 \\ .559 \\ \cdot 757 \end{array}$	$\begin{array}{r}0.212 \\ .216 \\ .221 \\ \hline 12\end{array}$	(12.479 12.742 13.005	$\begin{array}{r} 0.376 \\ .384 \\ .392 \\ \hline \end{array}$	$\begin{aligned} & 15 \cdot 593 \\ & 15 \cdot 922 \\ & 16 \cdot 251 \end{aligned}$	$\begin{array}{r}\text { 0. } 587 \\ .600 \\ .612 \\ \hline\end{array}$	$18 \cdot 704$ $19 \cdot 098$ 19.493	$\begin{array}{r}0.845 \\ .863 \\ .881 \\ \hline\end{array}$	48° 46 44
$\cdot 373$	470	42	- 319	. 025	. 637	-099	$9 \cdot 95$	- 224	. 269	- 399	16.580	. 624	19.888	89	42
$\begin{array}{r}.3721 \\ \hline .370\end{array}$	- 509	40	- 385	-025	- 769	-102	10.151	- 229	. 532	. 407	$16 \cdot 909$. 637	$20 \cdot 282$	-917	40
-370	- 548	38	-451	. 026	6.901	04	- 349	-234	13.795	- 415	$17 \cdot 237$	-649	$20 \cdot 677$	-935	38
369		36	-516	- 02	7.032	- 106	-546	- 239	14.053	$\cdot 424$	$17 \cdot 566$	- 662	$2 \mathrm{~L} \cdot 071$	-952	36
.367 .366	. 66	34	-582	. 027	- 163	- 108	$\cdot 743$	- 243	$\cdot{ }^{221}$	-431	17.895	-674	$2 \mathrm{~L} \cdot 465$	-971	34
$\cdot 364$	$\cdot 70$	32	-648	-028	- 295	$\cdot 110$	10.941	- 247	-583	-439	18.223	. 687	$21 \cdot 859$	0.989	32
363	-751	30	7	. 028	$\cdot 427$	$\cdot 112$	11-137	252	14.846	447	18.551	- 699	22	1-006	30
. 362	- 793	28	$\cdot 7$	-028	- 55	.113 .116	- 335	- 256	15.109	-455	18.880	$\cdot 711$	$22 \cdot 646$	-02	28
. 360	. 835		. 845	-29	.	. 116	532		$\cdot 371$	$\cdot 463$	19.208	- 724	23.040	$\cdot 041$	28
- 3 60	. 879	$\stackrel{24}{22}$. 9	. 029	-821	-118 .121	11.025	- 265	.	$\cdot 471$	19.5	$\stackrel{73}{ }$	23.	-059	24
-358	- 921	20	3.976 4.042		7.	-121		-274	15.8	$\begin{array}{r}479 \\ \cdot \\ \hline\end{array}$	19	-749	23.	-078	22
-358	5.966		4.042	'030		-122	12.123	274	16.159	-487	20.192	761	$24 \cdot 220$. 095	20
- 357	6.011	16	-108	-031	$\cdot 215$	$\cdot 123$	$\cdot 319$	278	$\cdot 421$	49	20.	77	24.6	115	18
$\cdot 356$	-055	14	-173	-032	.345 .477	. 128	 116 713	$\begin{array}{r}.283 \\ .288 \\ \hline\end{array}$	${ }^{6}$	-503	($\begin{aligned} & 20 \cdot 847 \\ & 21 \cdot 175\end{aligned}$	$\cdot 78$	$25 \cdot 006$	$\stackrel{1}{-1}$	16
355	. 100												25.399		
- 354	${ }^{145}$	10	$\begin{array}{r}\cdot 304 \\ \cdot 370 \\ \hline\end{array}$. 033	.608 .739	+130 -132 -13	$12 \cdot 909$ $13 \cdot 106$	$\begin{array}{r}.293 \\ .296 \\ \hline\end{array}$	$\begin{array}{r}17.208 \\ 470 \\ \hline\end{array}$	- 519	[$\begin{aligned} & 21 \cdot 503 \\ & 21.830\end{aligned}$. 81	$25 \cdot 792$ 26.185	$\begin{array}{r}\text { - } 166 \\ \cdot \\ \hline\end{array}$	12
- 35	92		- 436	-033	8.870	${ }_{-133}$	-	301	$7{ }^{2}$	- 537	$22 \cdot 850$ $22 \cdot 158$. 835		-	8
354	. 239														
353	285	6 4 4	$\cdot 567$	$\cdot 034$ $\cdot 034$ $\cdot 034$	9.001 .132	133 -136 $\cdot 138$	$\begin{array}{r}.499 \\ .696 \\ \hline\end{array}$	-305	17.994 $18 \cdot 257$ 8	- 542	$22 \cdot 485$ $22 \cdot 813$.847 .860	$\begin{aligned} & 26 \cdot 971 \\ & 27 \cdot 364 \end{aligned}$.219 .237	
$\cdot \cdot 353$	$\cdot 333$	2	. 632	-034	$\cdot 263$	- 139	13.893	- 313	18.519	- 55^{8}	23.140	. 871	$\begin{aligned} & 27.304 \\ & 27.757 \end{aligned}$	- 237	
4.353	6.380	0	$4 \cdot 698$	0.035	9.395	0.142	14.089	a. 3	${ }_{18 \cdot 781}$	0.56	23.46	0.88	28. 149	$1 \cdot 27$	0
Longitude			14°		16°		18°		20°		22°		24°		Long.
$\begin{array}{r}4.376 \\ \hline\end{array}$	$\begin{array}{r}5 \cdot 394 \\ -432 \\ \hline .470 \\ \hline\end{array}$	$\begin{aligned} & 48^{\circ} \\ & 46 \\ & 44 \end{aligned}$	$\begin{aligned} & 21 \cdot 810 \\ & 22 \cdot 27 \mathrm{I} \\ & 22 \cdot 73 \mathrm{I} \end{aligned}$	$\begin{array}{r} 1 \cdot 151 \\ 175 \\ \cdot 199 \end{array}$	24.912	$\begin{array}{r} \mathrm{I} \cdot 502 \\ \cdot 534 \\ \cdot \\ \cdot 565 \end{array}$	$28 \cdot 008$ $28 \cdot 599$ $29 \cdot 190$	$\begin{array}{r} \mathrm{I} \cdot 90 \mathrm{I} \\ .94 \mathrm{I} \\ \mathrm{I} .98 \mathrm{I} \\ \hline \end{array}$	$\begin{aligned} & 3 \mathrm{3r} \cdot 097 \\ & 3 \mathrm{~F} \cdot 754 \\ & 32 \cdot 410 \end{aligned}$	$\begin{array}{r} 2 \cdot 346 \\ \cdot 395 \\ \cdot 445 \end{array}$	$\begin{aligned} & 3+\cdot 180 \\ & 34 \cdot 901 \\ & 35 \cdot 623 \end{aligned}$	$\begin{array}{r} 2.837 \\ .897 \\ 2.957 \end{array}$	$\begin{aligned} & 37 \cdot 255 \\ & 38 \cdot 04 \mathrm{I} \\ & \mathrm{j}^{3 \cdot} \cdot 827 \end{aligned}$	$\begin{array}{r} 3.375 \\ .447 \\ .518 \end{array}$	$\begin{aligned} & 48^{\circ} \\ & 46 \\ & 44 \\ & \hline \end{aligned}$
372		42 40 38	$23 \cdot 191$$23 \cdot 651$$24 \cdot 111$	$\begin{array}{r} \cdot 223 \\ \cdot 248 \\ \cdot 272 \end{array}$	$\begin{aligned} & 26 \cdot 489 \\ & 27 \cdot 014 \end{aligned}$	$\begin{aligned} & .598 \\ & .629 \\ & .661 \end{aligned}$	$\begin{aligned} & 29 \cdot 7^{81} \\ & 30 \cdot 372 \\ & 30 \cdot 962 \end{aligned}$	$\begin{array}{r} \hline 2.021 \\ .061 \\ .101 \end{array}$	$\begin{aligned} & 33 \cdot 066 \\ & 33 \cdot 722 \\ & 34 \cdot 378 \end{aligned}$	$\begin{array}{r} 494 \\ .544 \\ .593 \\ \hline \end{array}$	$\begin{aligned} & 36 \cdot 344 \\ & 37 \cdot 065 \\ & 37 \cdot 785 \end{aligned}$	$\begin{array}{r} 3.017 \\ .077 \\ .137 \end{array}$	$\begin{aligned} & 39 \cdot 613 \\ & 40 \cdot 399 \\ & 41 \cdot 184 \end{aligned}$	$\begin{aligned} & .589 \\ & .660 \\ & .731 \end{aligned}$	4424038
370	- $54{ }^{8}$														
析	54		24.111		$27 \cdot 540$										
	. 627	$\begin{aligned} & 36 \\ & 34 \\ & 32 \end{aligned}$	$\left[\begin{array}{l} 24 \cdot 571 \\ 25.030 \end{array}\right.$	$\begin{array}{r} \hline \cdot 296 \\ \cdot 320 \end{array}$	$\begin{aligned} & 28 \cdot 065 \\ & 28 \cdot 590 \end{aligned}$	$\begin{array}{r} .693 \\ -724 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 31 \cdot 552 \\ & 32 \cdot 143 \end{aligned}\right.$	$\begin{array}{r} \cdot 141 \\ \cdot 182 \end{array}$	$\begin{aligned} & 35 \cdot 033 \\ & 35 \cdot 688 \\ & 36 \cdot 343 \end{aligned}$	$\begin{array}{r} .63 \\ .692 \\ .742 \end{array}$	$\begin{aligned} & 38 \cdot 506 \\ & 39 \cdot 226 \\ & 39 \cdot 946 \end{aligned}$	$\begin{array}{r} \cdot 197 \\ .256 \\ .316 \\ \hline \end{array}$	$\begin{aligned} & 1 \cdot .970 \\ & 42 \cdot 755 \\ & 43.539 \end{aligned}$	$\begin{array}{r} .803 \\ .874 \\ 3.945 \end{array}$	$\begin{aligned} & \hline 36 \\ & 34 \\ & 32 \end{aligned}$
366	,														
$\cdot 364$	$\cdot 709$		25.489	- 345	29-114	$\cdot 756$	$\frac{32 \cdot 732}{}$	222							
363	751		$\begin{array}{r} 25 \cdot 949 \\ 26 \cdot+08 \\ 26 \cdot 867 \\ \hline \end{array}$	$\begin{array}{r} \cdot 369 \\ -393 \\ -417 \\ \hline \end{array}$	$\begin{aligned} & 29 \cdot 639 \\ & 30 \cdot 163 \\ & 30 \cdot 687 \end{aligned}$	$\begin{aligned} & .788 \\ & .819 \\ & .851 \end{aligned}$	$\begin{aligned} & 33 \cdot 322 \\ & 33 \cdot 912 \\ & 34 \cdot 501 \end{aligned}$	$\begin{aligned} & \cdot 262 \\ & \cdot 302 \\ & \cdot 342 \end{aligned}$	$\begin{array}{r} 36 \cdot 998 \\ 37 \cdot 653 \\ 38 \cdot 307 \end{array}$	$\begin{aligned} & .791 \\ & .840 \\ & .800 \end{aligned}$	$\left[\begin{array}{l} 40 \cdot 6 \cdot 5 \\ 42 \cdot 385 \\ 4^{2} \cdot 104 \end{array}\right.$	$\begin{array}{r} -376 \\ -436 \\ -495 \\ \hline \end{array}$	$\begin{aligned} & 4 \cdot 324 \\ & 44 \cdot 108 \\ & 45 \cdot 892 \end{aligned}$	$\begin{array}{r} 4 \cdot 016 \\ \cdot 087 \\ -158 \end{array}$	$\begin{aligned} & 30 \\ & 28 \\ & 26 \end{aligned}$
362	- 793	28 26													
360	.835	26													
${ }^{\circ}$	- 879	$\begin{aligned} & 24 \\ & 22 \\ & 22 \\ & 20 \end{aligned}$	$\begin{aligned} & 27 \cdot 326 \\ & 27 \cdot 784 \\ & 28 \cdot 243 \end{aligned}$	$\begin{array}{r} \cdot 442 \\ \cdot 466 \\ -490 \\ \hline \end{array}$	$\begin{aligned} & 31 \cdot 211 \\ & 31 \cdot 735 \\ & 32 \cdot 259 \end{aligned}$	$\begin{array}{r} .882 \\ .914 \\ .946 \end{array}$	$\begin{aligned} & 35 \cdot 090 \\ & 35 \cdot 679 \\ & 36 \cdot 268 \end{aligned}$	$\begin{aligned} & \cdot 3^{82} \\ & -422 \\ & .462 \end{aligned}$	$\left[\begin{array}{l} 38 \cdot 961 \\ 39 \cdot 615 \\ 40 \cdot 269 \end{array}\right.$	$\begin{array}{r} .939 \\ 2.989 \\ 3 \cdot 018 \end{array}$	$\frac{42 \cdot 104}{42 \cdot 823}$	- 495	$\begin{aligned} & 46 \cdot 676 \\ & 47 \cdot 459 \\ & 48 \cdot 343 \end{aligned}$	$\begin{array}{r} -229 \\ \cdot 300 \\ -371 \end{array}$	$\begin{aligned} & 24 \\ & 22 \\ & 20 \end{aligned}$
35^{8}	921										$43 \cdot 542$	-615			
$3{ }^{8}$	5.966										$44 \cdot 261$. 674			
357	6.011	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\left[\begin{array}{l} 28 \cdot 701 \\ 29 \cdot 160 \\ 29 \cdot 618 \end{array}\right.$	$\begin{aligned} & 514 \\ & .538 \\ & 563 \end{aligned}$	$\begin{aligned} & 32 \cdot 743 \\ & 33 \cdot 307 \\ & 33 \cdot 830 \end{aligned}$	$\begin{gathered} 1.977 \\ 2.009 \\ 0.0 \end{gathered}$	$\begin{aligned} & 36 \cdot 857 \\ & 37 \cdot+46 \\ & 38 \cdot 034 \end{aligned}$	$\begin{aligned} & \cdot 501 \\ & \cdot \\ & \cdot 541 \\ & \cdot 591 \end{aligned}$	$\begin{aligned} & 40 \cdot 923 \\ & 41 \cdot 577 \\ & 42 \cdot 230 \end{aligned}$	$\begin{array}{r} .087 \\ .137 \\ -186 \\ \hline \end{array}$	$\begin{aligned} & 44 \cdot 979 \\ & 45.698 \\ & 46 \cdot 416 \end{aligned}$	$\begin{array}{r} 734 \\ .794 \\ .853 \\ \hline \end{array}$	$\begin{aligned} & 49 \cdot 026 \\ & 49 \cdot 809 \\ & 50 \cdot 592 \end{aligned}$	$\begin{aligned} & \cdot \mathbf{4 4 2} \\ & \cdot 513 \\ & -584 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \\ & 14 \end{aligned}$
356															
355	-														
354	145	12108	$\begin{aligned} & 30 \cdot 076 \\ & 30 \cdot 535 \\ & 30-993 \end{aligned}$	$\begin{aligned} & .587 \\ & .611 \\ & .635 \end{aligned}$	$\begin{aligned} & 3+35 \\ & 3+\cdot 77 \\ & 35 \cdot 47 \end{aligned}$	$\begin{array}{r} \cdot 072 \\ \cdot 103 \\ .135 \end{array}$	$\begin{aligned} & 38 \cdot 623 \\ & 30 \cdot 211 \\ & 30 \cdot 800 \end{aligned}$	$\begin{array}{r} .621 \\ .661 \\ .701 \\ \hline \end{array}$	$\begin{aligned} & 42 \cdot 883 \\ & 43 \cdot 537 \\ & 4+190 \end{aligned}$	$\begin{array}{r} 235 \\ -284 \\ -334 \end{array}$	$\begin{aligned} & 47 \cdot 134 \\ & 47 \cdot 852 \\ & 43 \cdot 570 \end{aligned}$	$\begin{array}{r} 9913 \\ 3.972 \\ 4.03^{2} \end{array}$	$\begin{aligned} & 5 \cdot \cdot 374 \\ & 52 \cdot 157 \\ & 52 \cdot 940 \end{aligned}$	$\begin{aligned} & \cdot 655 \\ & -726 \\ & -796 \end{aligned}$	12108
354	192														
354	239														
353	285	2	$\begin{aligned} & 3 \cdot 451 \\ & 31 \cdot 900 \\ & 32 \cdot 767 \end{aligned}$	$\begin{array}{r} 659 \\ .683 \\ .708 \end{array}$	$\begin{aligned} & 35 \cdot 921^{-} \\ & 35 \cdot 447 \\ & 35 \cdot 970 \end{aligned}$	$\begin{aligned} & .167 \\ & .198 \\ & .230 \end{aligned}$	$\begin{aligned} & 40 \cdot 388 \\ & 40 \cdot 976 \\ & 4 \cdot \cdot 564 \end{aligned}$	$\begin{aligned} & 7+1 \\ & .781 \\ & .821 \end{aligned}$	$\begin{aligned} & 4 \cdot 8 \cdot 83 \\ & 45 \cdot 496 \\ & 46 \cdot 149 \end{aligned}$	$\begin{aligned} & -383 \\ & .432 \\ & -481 \end{aligned}$	$\begin{aligned} & 4 \cdot 289 \\ & 50 \cdot 006 \\ & 50 \cdot 724 \end{aligned}$	$\begin{aligned} & \cdot 692 \\ & \cdot 151 \\ & \cdot 211 \end{aligned}$	$\begin{aligned} & 53 \cdot 722 \\ & 54 \cdot 504 \\ & 55 \cdot 287 \end{aligned}$	$\begin{array}{r} .867 \\ 4.938 \\ 5.009 \end{array}$	648
- 4.353	$6 \cdot 38$														
		0	.32.825	32	$37 \cdot 99$	$2 \cdot 26$	$4{ }^{2 \cdot 1} 5^{2}$	2.861	$46 \cdot 802$	$3 \cdot 531$	$51 \cdot 44^{2}$	4.2.70	56.069	5.080	0

* For Percentage of error of longitude on various parallels, see Note ior 17 Map.
(Prepared fur Map of Tibet and Turkistan)
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares.
Also distances from central Meridian $=X$ and arc-versines $=\mathbf{Y}$ of corners of 2 Degree Squares.

Longitude			2°		4°		6°		8°		10°		19°		$\frac{\text { Long. }}{\text { Lat. }}$
m	\boldsymbol{q}	Lat.	$\mathrm{X}=\boldsymbol{p}$	Y	X	\mathbf{Y}	X	Y	X	\mathbf{Y}	X	Y	X	Y	
		44°	3.179	0.032	$6 \cdot 357$	0.127	9.532	0.285	12.704	0.507	$15 \cdot 870$	$0 \cdot 792$	19.030	$1 \cdot 140$	44°
$\begin{array}{r}4.373 \\ .372 \\ \hline \cdot 370\end{array}$	$\begin{array}{r}5.432 \\ .483 \\ \hline\end{array}$	42	. 266	. 032	-531	-130	9.794	- 293	13.052	- 521	$16 \cdot 305$	-813	19.552	- 771	42
$\cdot \cdot 370$. 535	40	- 353	-033	$\cdot 706$	-134	10.055	- 301	13.401	535	$16 \cdot 741$	-835	20.074	- 203	40
	. 588	38	-441	. 034	$6 \cdot 880$	-137	$\cdot 316$	- 309	13.749	- 549	17.176	. 857	20.506	$\cdot 2.34$	38
. 367	. 688	36	- 528	-035	$7 \cdot 054$	-141	$\cdot 578$	- 317	14.097	- 562	17.611	- 879	21.117	- 265	36
-366	. 696	34	-615	.036	- 228	$\cdot 144$	10.839	- 324	14.445	-576	$18 \cdot 045$	-900	25.639	- 290	34
		32	$\cdot 702$	-037	- 402	-147	15.100	- 332	14.793	- 590	18.480	$\cdot 922$	$22 \cdot 160$	-327	32
$\cdot 365$ $\cdot 363$.752 .807	30	-789	-038	- 576	-151	- 361	- 340	15.140	- 604	18.914	-944	22.681	- 359	30
$\cdot 363$	-807	28	.876	. 039	-750	- 155	. 621	- 348	$15 \cdot 488$	-618	19.349	-966	23.201	- 390	28
4.362	5.864	26	3.963	0.040	7-924	0.158	II.882	0.356	15.836	0.632	19.783	0.987	23•722	I-42I	26

24 Map.
Projection: Modified Secant Conicalt. Scale 1 inch $=32$ miles. (Computed for latitudes $40^{\circ}-8^{\circ}$)
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares.
Also distances from central Meridian $=X$ and are-versines $=Y$ of corners of 2 Degree Squares.

Longitade			$2{ }^{\circ}$		4°		6°		8°		10°		12°		Lorg.
m	$\underline{ }$	Lat.	$\mathbf{X}=\boldsymbol{p}$	\mathbf{Y}	\mathbf{X}	Y	X	\mathbf{Y}	X	I	X	Y	X	Y	Lat.
$\begin{array}{r}4.311 \\ -309 \\ \hline \cdot 308 \\ \hline\end{array}$	$\begin{array}{r}5 \cdot 504 \\ \cdot 540 \\ \hline .578\end{array}$	40 38 36	$\begin{array}{r}3 \cdot 392 \\ .452 \\ \cdot 513 \\ \hline\end{array}$	$\begin{array}{r}0.024 \\ .024 \\ .025 \\ \hline\end{array}$	6.783 6.904 7.025	$\begin{array}{r} 0.095 \\ .097 \\ -099 \\ \hline \end{array}$	$\begin{array}{r}10 \cdot 173 \\ .354 \\ .535 \\ \hline\end{array}$	0.214 .218 .222	$\begin{aligned} & 13 \cdot 561 \\ & 13 \cdot 8.803 \\ & 14 \cdot 0.44 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \cdot 380 \\ .387 \\ .394 \\ \hline \end{array}$	$\begin{aligned} & 16 \cdot 94^{6} \\ & 17 \cdot 248 \\ & 17 \cdot 550 \\ & \hline \end{aligned}$	0.594 .605 .615	20.328 20.690 21.052 1.4	0.856 .871 .886	40 48 38 36
-308	- 578	$3+$	-573	. 025	-146	10		$\cdot 225$	- 286	-401	17.852	-626	21.415	$\cdot 901$	
- 307	. 616	32	. 634	. 026	- 266	- 102	10.898	-229	. 527	$\cdot 407$	$18 \cdot 153$ 18.55	. 637	$21 \cdot 77^{6}$ $22 \cdot 138$	-917	32 30
- 305	.653	30	-694	. 026	- 387	- 104	$\times 1.079$	$\cdot 233$	14.768	4414	$\underline{18 \cdot 454}$	-647	$\underline{22 \cdot 138}$	-932	
. 304	. 69	28		-02	-508	- 105	- 260	-237	$15 \cdot 009$	42 t	$18 \cdot 756$. 658	22.499	947	24
303	. 731	26	. 815	. 027	. 628	-107	-441	-241	. 251	- 428	19.058	-668	$22 \cdot 861$	-952	${ }_{24}^{26}$
$\underline{102}$	-770	24	. 875	-027	$\cdot 749$	- 109	621	- 244	-492	$\cdot 434$	$\underline{19.359}$	- 679	$23 \cdot 222$	-977	
$\cdot 300$. 8.8	22	-935	28	. 86	' 110	-802	$\cdot 248$	733	$\cdot 441$	19.660	. 689	$\frac{23.58}{}$	$\begin{array}{r}0.993 \\ \hline 1.008\end{array}$	
- 299	- 848	20	3.995	-028	7.990	1112	11.983	$\cdot 252$	15.974	. 448	$19 \cdot 961$	- 700	$23 \cdot 945$ 24.306	$1 \cdot 008$.023	20 18
-298	-889	18	4.056	-029	8.111	114	$12 \cdot 164$	- 256	$16 \cdot 215$	455	$20 \cdot 262$	$\cdot 711$	$2{ }^{24 \cdot 306}$	-023	
-298	-930	16	- 116	. 029	-231	$\cdot 115$	$\cdot 345$	-260	-456	-462				-038	
$\stackrel{.}{297}$	($\begin{aligned} & 5.971 \\ & 6.012\end{aligned}$	14	$\cdot 176$	- 029	$\cdot 352$	-117	$\stackrel{5}{\cdot} \cdot$.263 .267	.696 16.937	$\cdot 468$.475	$20 \cdot 864$ 21.165	$\cdot 732$ $\cdot 742$	$25 \cdot 028$ $25 \cdot 389$.053 .069	14
-296		12	. 236	-030	472	-119	$\cdot 706$	- 267	$\underline{16.937}$	475	$21 \cdot 165$		25.389		
-295	-054	10	-297	-030	-592	21	12.886	-271	17-178	$\cdot 4^{82}$	25.466	-753		$\begin{array}{r}.084 \\ .099 \\ \hline\end{array}$	
- 295	-097	8	$\cdot 357$. 031	-713	. 122	13.067	'275	.419 .659	- 48	退2r.767	- 777	$26 \cdot 472$. 114	${ }_{6}^{8}$
- 295	-139	6	$\cdot 417$	-031	$\cdot 833$	-124	$\underline{-248}$	279	. 659	-495	$22 \cdot 06$	\cdots			
-294	$\cdot 182$			-031		- 126	$\cdot 428$	282	17.900	- 502	$22 \cdot 369$ $22 \cdot 669$	- 78	$26 \cdot 833$ $27 \cdot 193$ 27.54		4 2
- 294		2	. 537	. 032	9.074	- 127	. 609	- 286	18-141	$\cdot 509$ 0516	22.669 22.970	\% 0.895 0.805		$\begin{array}{r}\text { - } 165 \\ \hline 160\end{array}$	${ }_{0}$
4.294	$6 \cdot 269$	0	4.597	0.032	9.194	0.128	13.790	- 290	18.381	- 516	22.970	0.805	$27 \cdot 554$		

- Percentage of error of longitade on various parallels.

Latitude	44°	41°	17^{\prime}	34°	50^{\prime}	$24^{\prime \prime}$
	28°	34^{\prime}	26°			
Error	0.70	0	0.61	0	0.58	

[^0]24 Map.-(Contd.) Projection : Modified Secant Conical*. Scale 1 inch=32 miles. (Computed for latitudes $40^{\circ}-8^{\circ}$)
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares. Also distances from central Meridian $=\mathbf{X}$ and arc-versines $=\mathbf{Y}$ of corners of 2 Degree Squares.

Longitudo			14°		16°		18°		20°		22°		24°		Long.
m	q	Lat.	$\mathrm{X}=p$	Y	X	Y	X	\mathbf{Y}	X	\mathbf{Y}	X	\mathbf{Y}	X	Y	Lat.
		40^{3}	$23 \cdot 706$	1.16+	-7.079	1-520	$30 \cdot 477$	I. 923	33-809	$2 \cdot 374$	37.164	$2 \cdot 871$	+0.512	3.416	40°
4.311	5.504	38	$\underline{2+128}$	${ }_{\cdot} 185$	-7.059 27.562	. 547	$30 \cdot 990$	-938	$3+412$	- +16	37.827	.933	+1.234	- 477	88
- 309	- 540	36	- $2+551$. 206	$28 \cdot 0$	- 574	$3 \mathrm{I} \cdot 532$	1.992	35.014	4.58	$38 \cdot 4^{89}$	2.974	+1.956	- 538	36
308	. 578	34	$2+973$	- 226	$25 \cdot 526$, 601	32.07+	2.026	35-616	501	39.150	3.025	+2.677	- 598	34
- 307	-610	32	$2+.973$ 25.395	- 247	$29 \cdot 008$. 628	$32 \cdot 6.6$. 060	36.218	- 543	$39 \cdot 812$.076	+3-393	. 659	32
-305	. 6.5	30	25 25	- 268	-9.490	. 656	$33 \cdot 158$. 095	$36 \cdot 819$	${ }^{5} 58$	$\underline{40.473}$	- 127	+ +119	-720	30
. 304	. 691	28	$\underline{26 \cdot 2,38}$. 683	33.700	-129	37.421	.627	+[134	- 178	$\overline{+1 \cdot 840}$	$\cdot 781$	28
- 303	$\cdot 731$	26	$26 \cdot 210$ 26.650	.309 .309	-9.972 10.453	- 710	$3+241$	-163	38.022	. 670	+11.795	. 229	$45 \cdot 560$. 842	28
- 302	$\cdot 770$	24	27.085	. 330	$30 \cdot 935$. 737	$34 \cdot 782$	-197	38.623	$\cdot 712$	$\underline{+2 \cdot 456}$. 280	$46 \cdot 281$	- 902	24
$\cdot 300$. 808	22	-27.503	. 351	$\frac{31 \cdot 410}{}$.764	35.324		39.22+	-754	+3-117	-331	47.001	3.963	22
- 299	.8 .8 .880	20	27.503 27.924	. 375	31.410 $31 \cdot 897$	767 $\cdot 791$	35. 365	. 266	39.825	-796	$+3 \cdot 17$ $+3 \cdot 777$	$\cdot 382$	$47 \cdot 721$	4.024	20
- 298	. 880	18	-28.3+5	- 392	32.379	.818	$36 \cdot 406$	$\cdot 300$	+0. 425	. 838	$\underline{+1+47}$	- 433	$48 \cdot 440$	-084	18
$\cdot 298$. 930	16	25.760	.413	32.860	-845	$36 \cdot 946$	- 334	+1.026	-88:	+5.097	$\cdot 4^{8 .}$	$44^{4 \cdot 160}$	- 14.5	16
- 297	$5 \cdot 971$	14	29.187	$\cdot 433$	$33 \cdot 3+0$. 872	37.487	. 368	+1.626	-923	+5.757	- 535	49.880	- 206	14
- 296	$6 \cdot 012$	12	29.608	-454	$33 \cdot 82 \mathrm{I}$. 899	$38 \cdot 028$	- 402	+2.227	$2 \cdot 965$	+6.417	- 586	50. 599	- 266	12
- 295	. 054	10	30	-475	34-302	-926	38.568	$\cdot 436$	$\overline{42 \cdot 827}$	3.007	$\overline{47 \cdot 077}$. 637	51.318	- 327	10
- 295	-097	-	$30 \cdot+50$	- 495	34.783	- 953	39.109	. 471	$43 \cdot 427$. 0.049	$47 \cdot 737$. 688	$52 \cdot 037$	- 388	8
- 295	-139	6	$30 \cdot 871$	- 516	35.263	1.980	39.649	- 505	+4.027	-091	$49 \cdot 397$	-739	$52 \cdot 756$	-448	6
- 294	-182								4.627	-133	49.056	- 790	53.476	. 509	4
-294	6.226	4 2	31-291	- 537	$35 \cdot 744$ $36 \cdot 225$	2.007 .034	$40 \cdot 730$	- 573	$45 \cdot 227$	- 176	$49 \cdot 716$. 84	54.195	- 570	2
4-294	$6 \cdot 269$	0	32.133	1.578	36.705	2.061	41.270	2.607	45.827	3.218	50-375	3.892	54.914	4.630	0

25 Map.

> Projection : Modified Secant Conicalt. Scale 1 inch=32 miles. (Computed for latitudes $34^{\circ}-12^{\circ}$)

(Prepared for Map of Persian Gulf, Oman, Central and Southern Arabin)

Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares.
Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 2 Degree Squares.

Longitude			2°		4°		6°		8°		10°		. 12°		Long.
m	q	Lat.	$\mathrm{X}=\mathrm{p}$	I	X	Y	X	Y	\mathbf{X}	Y	X	Y	\boldsymbol{X}	Y	Lat.
4.307	5.647	34°	3.634	$0 \cdot 025$	7'2+7	$0 \cdot 098$	10.868	0.221	14.488	$0 \cdot 393$	18.105	0.614	21.718	0. 88.	$34{ }^{3}$
$\begin{array}{r}4.305 \\ \hline\end{array}$	$\begin{array}{r}5647 \\ \hline 684 \\ \hline\end{array}$	32	. 682	. 025	3^{63}	-100	II $\cdot 043$	- 225	-721	- 399	18.396	. 624	$22 \cdot 068$. 898	32
$\cdot 304$	$\cdot 722$	30	. 740	-025	4^{88}	- 102	. 218	- 228	14.954	- 406	18.688	-634	$22 \cdot 418$	'912	30
$\cdot 303$. 759	28	- 799	-026	- 597	- 103	393	-232	$15 \cdot 188$	-412	18.980	-6+1	$22 \cdot 768$	$\cdot 927$	28
$\bigcirc 302$	- 707	26 24	-857	-020	.713	- 105	568	- 235	$\cdot 421$	-418	$19 \cdot 271$	-654	23.117	-941	26
301	- 815	24	-915	-026	-830	-106	743	- 230	$\cdot 654$	$\cdot 425$	19.562	. 663	$23 \cdot 467$	-955	24
'300	.874	22	3.974	. 027	7.047	108	11-918	' 243	15.887	$\cdot 431$	19.85	. 673	$33 \cdot 816$	$\cdot 969$	22
.209	.913	20	+.032	. 027	$8 \cdot 063$	- 100	$12 \cdot 093$	- 246	$16 \cdot 120$	$\cdot 437$	20.145	. 683	$2+\cdot 166$	-96i	20
-298	. 954	18	090	028	- 180	1 t	. 268	- 250	$\cdot 353$	4-4	$20 \cdot 436$. 693	$\underline{2+515}$	0.998	18
$\cdot 297$	5.903	16	- 48	028	. 296	-113	-4 42	$\cdot 253$	- 586	450	$20 \cdot 727$	703	$2+\cdot 864$	$1 \cdot 012$	16
$4 \cdot 296$	6.033	14	- 207	. 029	413	-114	. 617	. 257	16.819	'456	$21 \cdot 018$	713	25.213	1-026	14
		12	4.265	$0 \cdot 029$	$8 \cdot 529$	$0 \cdot 116$	12.792	$0 \cdot 260$	$17 \cdot 052$	0.463	$21 \cdot 309$	0.723	$25 \cdot 563$	I $\cdot \mathrm{O}_{4} 1$	12

* For Percentage of error of longitude on various parallels, see Note for 20 Map .
\dagger Percentage of error of longitude on various parallels.

Latitude	34°	31°	$23^{2} 51^{\prime} 22^{\prime \prime}$	15^{3}	10^{2}
Error	1.0	0	0.9	0	0.0

26 Map.
Projection: Modified Secant Conical*. Scale 1 inch $=40$ miles. (Computed for latitudes $40^{\circ}-25^{\circ}$)
(Prepared for Map of Persia)
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 2 Degree Squares. Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 2 Degree Squares.

Longitude			2°		4^{8}		6°		8^{6}		10^{8}		$1 \overline{5}^{\circ}$		$\frac{\text { Long. }}{\text { Lat. }}$
m	q	Lat.	$\mathrm{X}=p$	Y	X	Y	X	Y	X	Y	X	Y	X	Y	
3.449	$4 \cdot 378$	40 38	2.665 .729	0.025 .026	$\begin{array}{r}5.329 \\ .458 \\ \hline\end{array}$			0.224 .230	10.650	0.398 .	13.306	0.623	15.957	0.806	40°
${ }^{-} \cdot 4+7$	$\xrightarrow{+417}$	$\begin{aligned} & 38 \\ & 36 \end{aligned}$	$\begin{aligned} & 729 \\ & \cdot 794 \end{aligned}$	$\begin{array}{r} .026 \\ .026 \end{array}$	$\begin{array}{r}+458 \\ \cdot \\ \cdot 587 \\ \hline\end{array}$	$\cdot 102$ $\cdot 104$ 104	$\begin{array}{r}8.185 \\ .378 \\ \hline .58\end{array}$	$\begin{array}{r}\cdot 230 \\ \cdot 235 \\ \hline 2\end{array}$	(10.908	$\begin{array}{r}\cdot \\ \cdot \\ \cdot \\ \hline\end{array}$	13.628 13.950 1.4 .23	.638 .653	$16 \cdot 343$ $16 \cdot 729$	-918	38
-446	-457							-35			I3.950	-653	16•729	939	36
$\cdot 445$	-4988	34 34	-858	.027 .027 .02	$\begin{array}{r}\cdot 716 \\ \cdot 8 \\ .85 \\ \hline\end{array}$	$\cdot 107$ $\cdot 109$ -107	$\stackrel{.571}{.764}$	$-2+1$ -216	-424	- 428	14.272	. 668	17-115	-961	34
$\cdot 44$	- 538	330	$\begin{array}{r}\text { r } \\ \hline 293 \\ 2.987 \\ \hline\end{array}$	$\begin{array}{r}\cdot 027 \\ \cdot 028 \\ \hline\end{array}$	$\begin{array}{r}.845 \\ 5.973 \\ \hline\end{array}$	-109	$8 \cdot 764$	-2.66	. 681	-437	$14 \cdot 59+$	-683	$17 \cdot 501$	0.983	32
$\cdot 4.7$	$\cdot 579$	30	$2 \cdot 987$. 028	$5 \cdot 973$	$\cdot 112$	8.957	-251	$\underline{11} \cdot 938$	$\cdot 447$	$\underline{14.915}$	-698	17.887	1-005	30
$4{ }^{42}$. 621	$\stackrel{28}{26}$	3.052 .116	-029	6.102	-114	9.151	- 257	12-196	- 456	$\stackrel{15.237}{ }$	$\cdot 713$	18.272	. 026	28
3.442	4.665	$\stackrel{20}{24}$	3.116 3.180	$\begin{array}{r}\text {-029 } \\ \hline 0.030\end{array}$	${ }^{2} 231$	-117	9.344	- 262	$12 \cdot 453$	-466	15.558	$\cdot 723$	18.558	- $0+8$	26
		24	3.180	0.030	6. 360	0.119	9•537	0.268	12.710	0.476	15.880	0.743	19.043	1 -070	24

27 Map.
Projection: Modified Secant Conicalt.
(Computed for latitudes $40^{\circ}-8^{\circ}$)

Scale 3/8,000,000.
or 1 inch $\fallingdotseq 42 \cdot 088$ miles.

Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares.
Also distances from central Meridian $=\mathbf{X}$ and arc-versines $=\mathrm{Y}$ of corners of 4 Degree Squares.

Longitude			4°		8°		12°		16°		20°		2.6		Long.
m	q	L2\%.	$\mathbf{X}=p$	\underline{Y}	X	Y	X	Y	X	Y	X	Y	X	Y	Lat.
$6 \cdot 534$	$8 \cdot 397$	40°	5.157	0.072	10.311	0. 290	15.456	0.651	$20 \cdot 589$	1-150	25.706	1.804	$30 \cdot 603$	2. 597	40°
$\begin{array}{r}6.534 \\ .550 \\ \hline .546\end{array}$	$\begin{array}{r}8 \cdot 397 \\ .510 \\ \hline .625\end{array}$	36 32	5.341 .525	-075	10.678	- 300	$16 \cdot 007$ 16.557	. 674	21.323	- 191	$26 \cdot 622$. 869	31-900	. 690	36
-. 546	. 625	32	$\cdot 525$. 078	$11 \cdot 045$	-310	$16 \cdot 557$	- 697	$22 \cdot 056$	-2,32	27.537	-934	32-996	$\cdot 782$	32
- 546	$\cdot 7+4$	28	.708	-080	- 412	$\cdot 320$	17.107	$\cdot 720$	22.788	-273	$28 \cdot 452$	I 909	34-092	. 874	24
$\begin{array}{r}542 \\ \cdot 533 \\ \hline\end{array}$.714 .862	24	5.892	. 083	II• 778	- 330	17.657	. $7+3$	$23 \cdot 520$	- 314	$29 \cdot 366$	$2 \cdot 663$	15-188	2.967	24
535		20	6.075	-086	12.145	- 341	$18 \cdot 206$. 766	$24^{2} 25^{2}$	355	30-279	-177	$36 \cdot 283$	3.060	20
. 533		16	-258	. 088	- 512	-351	$18 \cdot 755$	-789	$24 \cdot 98.1$	$\cdot 396$	$3 \mathrm{x} \cdot 192$	-191	$37 \cdot 377$	-152	16
- 533	9.110 .239	12	-411	-090	12.878	-361	$19 \cdot 304$. 813	$25 \cdot 715$	'437	32.105	- 255	$38 \cdot 471$	- 244	12
	$\cdot .368$	8	.624	- 093	13.24	-371	19.853	.836	$26 \cdot 446$	'478	33.018	- 319	39. 565	336	8
$\begin{array}{r}\text { - } 5 \cdot 5 \\ \hline 6 \cdot 529\end{array}$		4	. 6.807	-096	. 610	$\cdot 381$	20.402	.858	27.177	- 519	33.931	38.3	$4 \cdot 659$	-429	4
6. 529	$9 \cdot 494$	0	$6 \cdot 990$	$0 \cdot 099$	13.976	0.391	$20 \cdot 951$	0.880	$27 \cdot 908$	$1 \cdot 560$	$34 \cdot 8+4$	2.447	41.752	3. 522	0

28 Map.

Projection: Modified Secant Conical \dagger. (Computed for latitudes $40^{\circ}-8^{\circ}$)

Scale 1/4,000,000.
or $1 \mathrm{inch} \fallingdotseq 63.132$ miles.

Lengthe in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares. Also distances from central Meridian $=\mathbf{X}$ and arc-versines $=Y$ of corners of 4 Degree Squares.

Longitude			4		8^{6}		12°		16°		20°		24°		Long.
m	q	Lat.	$\overline{\mathrm{X}}=\boldsymbol{p}$	Y	X	Y	$\overline{\mathrm{X}}$	Y	X	Y	X	Y	$\overline{\mathrm{X}}$	Y	Lat.
		40°	$3 \cdot 438$	0.048	6.874	0.193	$10 \cdot 304$	0.434	$13 \cdot 726$	0.767	17.1.17	1. 203	$20 \cdot 535$	1.731	40°
+ 4.369	5.598	36	- 561	. 050	7.119	- 200	-0.671	- 449	$14 \cdot 215$	-794	17.748	$\cdot 246$	$21 \cdot 267$	-793	36
- -366		32	. 683	.052	$\cdot 363$	207	$11 \cdot 038$	-465	$14.70+$	- 321	$18 \cdot 358$	$\cdot 299$	$21 \cdot 998$. 855	32
	$\cdot 750$	28	805	-053	-608	$\cdot 213$	- 405	480	15-193	4	$18 \cdot 968$. 332	$22 \cdot 728$	916	28
359	-829	24	3.928	-055	7.852	- 220	11-771	-495	15.680	-876	19.577	- 375	23.459	1.978	24
. 359	- 908	20	4.050	-057	8.097	- 227	12.137	-511	$16 \cdot 169$	- 903	20.1	$\cdot+17$	2+.899	2.040	20
. 357	5.990	16	$\cdot 172$			-234		. 526	$16 \cdot 656$	930	$20 \cdot 795$	-460	24.918	-101	16
$\cdot 355$	6.073	12	- 294	-. 060	$\cdot{ }^{-585}$	-241	12.869	- 542	17-143	958	$21 \cdot 404$	$\cdot 503$	25.648	- 163	12
- 354	159	8	-416	- 062	8.829	- 248	13.235	- 557	17.631	0.985	22.012	. 545	$26 \cdot 377$	- 224	8
35.	. 245				$\underline{9.073}$. 601		18.148	1.012	22.621	5^{88}	27-106	286	4
$4 \cdot 353$	$6 \cdot 329$	0	4.660	0.066	$9 \cdot 317$	- 2620	13.967	- $\cdot 5.587$	18.605	1.039	23.230	1.630	$27 \cdot 835$	$2 \cdot 347$	0

- Percentage of error of longitude on varions parallels.

Latitade	40°	$3 r^{\prime} 30^{\circ}$	$32^{\circ} 34^{\prime}$	$27^{\prime} 30^{\prime}$	25°
Error	0.47	0	0.43	0	0.40

Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares.
Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 4 Degree Squares.

Longitude			$4{ }^{\circ}$		8°		12°		16°		20°		24°		Long.
m	q-	Lat.	$\mathrm{X}=p$	Y	X	Y	X	Y	X	Y	X	Y	X	Y	Lat.
		40°		$0 \cdot 048$	$6 \cdot 781$	0.190	10.164	0.429	13.540	0.760	$16 \cdot 9$	1.187		1.708	40°
$4 \cdot 310$	5.522	36	$\begin{array}{r}3.392 \\ \cdot 513 \\ \hline\end{array}$. 0.0	7-022	-197	- 526	$\cdot 443$	14.022	${ }^{-} \cdot 787$	17.507	- 230	20.978	- 769	38
307	- 596	32	- 633	. 051	${ }^{7} \cdot \mathbf{2 6 4}$	- 203	10.888	459	14.504	. 815	18.109	. 272	21.699	. 830	32
305	672	28		-05		-210	11.2	474	$14 \cdot 986$. 842	18.711	314	22.420	. 891	28
- 302	. 785	24	.754 . 75	-055	-746	-217	- 61	489	$15 \cdot 468$. 869	19.312	- 356	$23 \cdot 141$	1.951	24
. 300	. 828	20	.375 3.995	-056	7.987	- 224	II - 973	504	$15 \cdot 949$	-896	19.913	- 398	$23 \cdot 861$	2.012	20
-298	909	16	$\frac{4 \cdot 116}{}$		8.228	$\cdot 231$	12.334	-519	$16 \cdot 430$	$\cdot 923$	20.513	$\cdot 441$	24.580	'073	16
- 296	5.991	12	4.236 .3	-059	- 469	- 238	12.695	- 535	$16 \cdot 911$. 950	21.154	-483	$25 \cdot 300$	$\cdot \mathrm{r} 33$	12
- 295	6.075		- 357	-061	$\cdot 710$	- 245	13.056	- 550	$17 \cdot 392$	- 9.977	21-714	- 525	26.019	-194	8
29	. 160			063	8.950	251		56	$\underline{17.872}$	1.004	22.314	567	26.738	255	4
4.294	6.247	0	4. 597	0.065	9-190	$0 \cdot 257$	13.778	0.580	18.352	1.031	22.914	1. 609	$27 \cdot 457$	$2 \cdot 316$	0

30 Map.

> Projection : Modified Secant Conical*. $\left(\right.$ Computed for latitudes $40^{\circ}-\mathbf{8}^{\circ}$)

Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares.
Also distances from central Meridian $=\bar{X}$ and arc-versines $=\mathrm{Y}$ of corners of 4 Degree Squares.

Longitude			4°		8°		12°		16°		20°		24°		Long.
m	q	Lat.	$\mathrm{X}=p$	Y	X	Y	X	\mathbf{Y}	X	Y	X	Y	X	Y	Lat.
		40°	2.751	0.038	5•499	O. 154	$8 \cdot 24.3$	$0 \cdot 347$	10.981	0.613	13.710	$0 \cdot 962$	$16 \cdot 428$	$1 \cdot 3^{8} 5$	40°
$\begin{array}{r}3.495 \\ \hline\end{array}$	4.478 .538	36	- 8.819	. 040	5. 695	. 160	- 5.37	. 359	11.372	. 635	14.198	0.997	17.013	- 4.34	36
- 493	$\underline{.538}$	32	2.946	- $0+1$	$5 \cdot 891$	- 165	$8 \cdot 830$	$\cdot 372$	11.763	. 657	14.686	1.031	$17 \cdot 598$	$\cdot 484$	32
$\cdot 491$. 6000	28	3.044	$\cdot{ }^{0}+2$	$6 \cdot 086$	-171	9-124	$\cdot 3^{8} 4$	12-154	-679	$15 \cdot 174$	-066	18.182	- 533	28
.489 .487	.663	24	-1.42	- 0.44	- 282	-176	$\cdot 417$	-396	. 544	-701	15.662	-100	${ }_{1} 8 \cdot 767$	- 582	24
. 487	$\cdot 727$	20	- 240	. 046	448	-182	9.710	- 409	12.934	-722	16.149	. 134	19.351	. 632	20
. 486	$\cdot 792$	16	- 3.35	-047	-673	-187	$10 \cdot 002$	$\cdot 42$ t	13.325	- 74	$\overline{16.636}$	-168	19.934	. 681	16
.484 .483	. 859	12	435	- 049	6.868	-193	-205	-434	13.715	$\cdot 766$	$17 \cdot 123$. 202	$20 \cdot 518$	730	12
. 482	- 6.927	8	- 533	-050	$7 \cdot 064$	- 198	$\cdot 588$	- 446	14.105	$\cdot 788$	17.610	. 236	$21 \cdot 102$	779	8
$3 \cdot 482$	$\frac{4.064}{5.064}$	4	. 631	. 051	-259	-204	$10.88{ }_{1}$	-458	494	-810	$18 \cdot 097$. 270	21.685	. 829	4
3.482	5.064	0	3.728	$0 \cdot 052$	7.4.54	0.209	11-174	$0 \cdot 470$	14.884	0.832	$18 \cdot 5^{84}$	1-304	$22 \cdot 268$	$1 \cdot 878$	0

31 Map.
Projection : Modified Secant Conical*. Scale 1 inch $=80$ miles. (Computed for latitudes $40^{\circ}-\mathbf{8}^{\circ}$)
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares.
Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 4 Degree Squares.

- For Percentage of error of longitu le on various parallele, see Note for 20 Map .

Lengthe in inches along Mericlian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares.
Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 4 Degree Squares.

Longitude			4		$8{ }^{\circ}$		12°		16°		20°		24°		
m	q	Lat.	$\mathrm{X}=\boldsymbol{p}$	Y	X	Y	X	Y	$\overline{\mathrm{X}}$	Y	X	Y	X	$\overline{\mathrm{Y}}$	La
2.913	$3 \cdot 732$	40°	2.292	0.032	$4 \cdot 583$	0. 128	6.869	O. 289	9.151	0.512	11.425	0.802	13.690	[154	40°
-911	\cdots	36 32 3	- 374	$\cdot 033$	- 746	- 133	7.114	- 299	$9 \cdot 477$	- 530	${ }_{11} \cdot 88^{2}$. 831	$14 \cdot 178$	-195	36
$\cdot 909$	-.833		-455	-034	4.909	-138	$\cdot 359$	$\cdot 310$	$\underline{9.803}$	548	$\underline{12 \cdot 239}$. 859	${ }_{14}{ }^{1} \cdot 665$	- 237	\%
-907	-886	${ }_{24}^{28}$	- 537	. 035	5.072	- 142	. 603	- 320	10.128	-566	$\underline{12 \cdot 645}$	- 888	15•152	-277	28
$\cdot 906$	- 939	24 20	-619	-037	$\cdot 235$	-147	7.847	330	10.453	- 584	13.051	-917	15.639	- 319	24.
- 905	3.994	20	700	-038	398	${ }^{1} 151$	8.091	341	10. 779	-602	13.457	- 945	$16 \cdot 126$	- 360	2
-903	4.049	16	782	039	-561	-156	3.35	-351	11.104	-620	13.863	0.973	16.612	401	16
-903	- 106	12	863	- $0+0$	723	-161	579	-361	11.429	-639	$1{ }^{1} \cdot 269$	$1 \cdot 002$	17.099	$\cdot 42$	12
-902	- 163	8	$2 \cdot 945$	$\stackrel{041}{ }$	$5 \cdot 886$	-165	$8 \cdot 823$	371	[1.754	-657	$1{ }^{4} \cdot 675$	-031	17.585	$\cdot 483$	H
		4	3.026	- 43	6.049	$\cdot 169$	9.067	$\cdot 3^{88}$	12.079	. 675	15.08 t	-059	18.071		
$2 \cdot 902$	$4 \cdot 220$	0	3.107	0.044^{\prime}	6.211	0. 174	$9 \cdot 311$	-0.392	12.404	o. 693	15.487	1.087	18.557	1.565	0

33 Map.
Projection: Modified Secant Conical*. Scale 1 inch $=96$ miles. (Computed for latitudes $40^{\circ}-8^{\circ}$)
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares. Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 4 Degree Squares.

Longitade			$4{ }^{\text {o }}$		8°		12°		$16^{\text {¢ }}$		20°		24°		Lons,
m	\underline{q}	Lat.	$\mathbf{X}=p$	Y	X	\underline{Y}	\mathbf{X}	Y	X	Y	X	Y	X	\bar{Y}	Lat
2.873 -871	3.681 -731	40 36 32	$\begin{array}{r}2 \cdot 261 \\ \cdot 342 \\ .422 \\ \hline\end{array}$	0.032 .033 .034	$\begin{array}{r}4.520 \\ .681 \\ 4.842 \\ \hline\end{array}$	$0 \cdot 127$ 131 .136	6.776 7.017 259	0.285 .295 .306	9.026 9.348 0.669	0.507 .525 .543	(11.270 $\begin{aligned} & 11.671 \\ & 11 \\ & 12.072\end{aligned}$	$\begin{array}{r}0.791 \\ .820 \\ .848 \\ \hline\end{array}$	[13.504	$\begin{array}{r}\text { I } 139 \\ -179 \\ \cdot 220 \\ \hline\end{array}$	40 36 32 30
.870	$\cdot 7^{88}$	32	-422	. 034	$4 \cdot 842$	-136	$\stackrel{259}{+}$	- 306	9.669	- 543	$\underline{12.072}$. 848	$\underline{14.466}$	- 22	32
-868	-833	28	$\cdot{ }_{\cdot} \cdot 503$. 035	5.003	- 140	- 500	- 316	9.991	-561	12.474	$\cdot 876$	14.947	260	28
-867	-885	24 20	- 583	-036	- 164	- 145	$\cdot 741$ 7.982	- 326	10.312	- 579	12.874 10.727	-904	15.427 15.297	-301	${ }_{20}^{2 .}$
$\cdot .865$		20	-663	$\cdot 037$	325	. 149	7.982	- 336	$10 \cdot 632$	-597	13.275	'932	$\underline{15.907}$	341	20
	3.994	16	744	- 0	- $4^{88} 5$	- 154	8.222	- 346	$10 \cdot 9.53$	-615	$13 \cdot 675$	- 960	${ }^{16 \cdot 3^{87}}$	3^{38}	115
-863	$\begin{array}{r}3.994 \\ 4.050 \\ \hline\end{array}$	12 8	$\begin{array}{r}.824 \\ .005 \\ \hline\end{array}$	-04	-646	.158 .163	$\begin{array}{r}\cdot 463 \\ .704 \\ \hline\end{array}$	- 3.36	$11 \cdot 274$ 11.594	-633	14.076	0.988	16.866	$\cdot 422$	12
. 863	107	8	-905	-41		-163	$\cdot 704$	- 306	11-594	651	14.476	1.016	[$7 \cdot 346$		
2.863	4-165	4	$\begin{aligned} & 2.985 \\ & 3.065 \end{aligned}$	$\begin{array}{r} .042 \\ 0.043 \end{array}$	$\begin{gathered} 5.967 \\ 6.128 \end{gathered}$	$\begin{array}{r} .167 \\ 0.172 \end{array}$	$\begin{aligned} & 8.944 \\ & 9.184 \end{aligned}$	$\begin{array}{r} .376 \\ 0.3^{866} \end{array}$	$\begin{aligned} & 11 \cdot 915 \\ & 12 \cdot 236 \end{aligned}$	$\begin{array}{r} .669 \\ 0.687 \end{array}$	$\begin{aligned} & 14.876 \\ & 15.276 \end{aligned}$	$\begin{aligned} & 1.045 \\ & 1.074 \end{aligned}$	$\left[\begin{array}{l} 17.825 \\ 18 \cdot 305 \end{array}\right.$	$\begin{array}{r} .503 \\ \mathrm{r} .544 \end{array}$	4

34 Map.

> Projection: Modified Secant Conical* (Computed for latitudes $40^{\circ}-8^{\circ}$).

Scale 1/12,000,000.
or 1 inch $\fallingdotseq 189396$ miles.
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares.
Also distances from central Meridian $=\mathbf{X}$ and arc-versines $=\mathrm{Y}$ of corners of 4 Degree Squares.

Longitude			4°		8°		12°		16^{0}		20°		24°		Long.
m	q	Lat.	$\mathbf{X}=p$	Y	X	Y	X	Y	X	Y	X	Y	X	Y	Tat.
		40°	I 146	0.016	$2 \cdot 292$	0.064	$3 \cdot 435$	0.145	4.576	0.256	5.713	0.401	$6 \cdot 845$	0.577	40°
x.456	1.866	36	1.146 $\cdot 187$	-017	- 373	. 067	- 555	-150	. 739	. 265	5.916	. 416	$7 \cdot 089$	- 598	34
-455	-891	32	- 228	. 017	-455	. 069	. 680	- 155	4.902	. 274	6.120	-430	. 333	-619	32
$\cdot 455$	$\cdot 917$	28	$\cdot 2$. 018	. 536	. 072	. 802	-160	5-064	$\cdot 283$. 323	'444	. 576	-639	28
-454	-943	24	. 309	. 019	-617	. 074	3.924	-165	- 227	- 292	- 526	-459	7.820	. 660	24
-453	- 969	20	-350	-019	. 699	.076	4.046	-171	- 390	- 301	-729	$\cdot 473$	8.063	-680	2)
-452	1997	16	- 391	-020	$\cdot 7^{81}$	-078	- 168	-176	- 552	-310	$\overline{6 \cdot 933}$	$\cdot 4^{87}$	- 306	'701	16
-452	2.025	12	-431	-020	. 862	.081	. 290	-181	. 715	- 320	7•135	- 501	- 550	-721	12
-451	. 053	8	-472	. 021	$2 \cdot 943$. 083	-412	- 186	5.877	- 329	$\cdot 33^{8}$	- 516	$8 \cdot 793$	$\cdot 742$	8
-451	- O B 2	4		021	3.025	. 085	. 534	-191	6.040	-338	'541	. 530	9.036	$\cdot 762$	4
1.451	2.110	4 0	$\cdot 513$ 1.553	0.022	$3 \cdot 025$ $3 \cdot 106$	- 087	4.656	0.196	$6 \cdot 202$	0.347	7.744	0.544	$9 \cdot 279$	0.783	0

*For Percentinge of error of longitude on various parallels. see Note for 20 Map. (Computed for latitudes $40^{\circ}-8^{\circ}$)
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares.
Also distances from central Meridian $=X$ and are-versines $=Y$ of corners of 4 Degree Squares.

36 Map.
Projection: Modified Secant Conical*. Scale 1/16,000,000. (Computed for latitudes $40^{\circ}-8^{\circ}$)
or 1 inch $=252 \cdot 528$ miles.
Lengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares.
Also distances from central Meridian $=\mathrm{X}$ and arc-versines $=\mathrm{Y}$ of corners of 4 Degree Squares.

Longitude			4°		8°		19°		16°		20°		$\underline{24}{ }^{\circ}$		Longr.
m	/	Lat.	$\mathrm{X}=p$	X	X	I	$\bar{\chi}$	Y	X	Y	X	Y	X	I	Lat.
1-092	$1 \cdot 400$	40 36	0.860	0.012	1.719	$0 \cdot 0.8$	2.576	0. 108	3.432	$0 \cdot 192$	$4 \cdot 284$	$0 \cdot 301$	5.134	0.433	40°
$\cdot 092$	415	36	. 890	-012	- 780	-050	-668	112	. 554	- 199	437	-312	$\cdot 317$	-448	36
.091	43^{8}	32	-921	. 013	-8+1	. 0.52	-760	. 116	.676	- 205	. 590	-322	-500	- 464	32
$\cdot 090$	-457	28	$\cdot 951$	-013	-962	-053	-851	12	$\cdot 798$	-213	$\cdot 742$	333	. 682	-479	28
. 090	4	24	0.982	-0rt	$1 \cdot 963$	-055	$2 \cdot 943$	-124	$3 \cdot 920$	-219	4.895	$\cdot 3+4$	$5 \cdot 805$	-495	24
. 080	. 498	20	1.013	- 014	$2 \cdot 024$	-057	$3 \cdot 034$	-128	$\begin{array}{r}1.042 \\ + \\ \hline\end{array}$	-226	$5 \cdot 047$	335	$6 \cdot 047$	-510	20
	- 518	16	-043	$\cdot 015$. 085	'059	-126	-132	- 164	-233	-199	$\cdot 305$	230	-525	16
. 089	-540	12	-074	.015	- 146	- 060	$\cdot 217$	- 136	- 286	- 240	-351	$\cdot 376$	- 412	-541	12
-088	. 561	8	-104	-016	- 207	-062	. 309	-139	-408	- 246	- 503	-386	505	-556	8
1.088	1. 582	4 0	$\cdot 104$.135 1.165	.016 0.017	- 2.268	.064 0.066	400 3.492	$\cdot 143$ 0.147	.530 4.652	.253 0.260	.655 5.807	.397 0.407		.572 4.58	4
		0	$1 \cdot 165$	0.017	2. 329	0.066	$3 \cdot 492$	0.147	$4 \cdot 652$	0. 260	$5 \cdot 807$	0.407	$6 \cdot 960$	$4 \cdot 587$	0

37 Map.

> Projection : Modified Secant Conical*. Scale 1 inch $=256$ miles. (Computed for latitudes $40^{\circ}-8^{\circ}$)

Jengths in inches along Meridian $=m$, Diagonal $=q$, and Parallel $=p$ of 4 Degree Squares. Also distances from central Meridian $=X$ and arc-versines $=Y$ of corners of 4. Degree Squares.

Longitude			$4{ }^{\circ}$		8°		12°		16°		20°		24°		$\left\|\frac{\text { Long. }}{\text { Lat. }}\right\|$
m	9	Lat.	$\mathrm{X}=p$	Y	\mathbf{X}	Y	X	Y	X	Y	X	Y	X	Y	
1.078	$\cdots 3^{81}$	40°	0.848	0.01	1-695	0.048	$2 \cdot 541$	$0 \cdot 107$	$3 \cdot 385$	0.190	4. 226	0. 297	5.064	0.427	40°
-077	$\cdot 399$	36 32	. 878	-013	$\cdot 756$. 049	. 632	-111	:506	- 197	$\cdot 377$	- 308	${ }^{-245}$. 442	36
-076	$\cdot 418$	32	-908	-013	816	-051	$\cdot 722$	-115	. 626	- 204	- 527	$\cdot 318$	$\cdot 425$	- 458	32
-076	$\cdot 4{ }^{8}$	28	- 939	. 013	-876	-053	813	$\cdot 119$	747	-211	$\cdot 678$	-329	. 605	-473	28
- 075	-457	24 20 20	- 969 0.999	014	- 937	-054	-903	- 122	- 867	$\cdot 217$	-828	-339	$\cdot 785$	-488	24
$\cdot 075$	477	20	$0 \cdot 999$	-014	1-997	-056	$2 \cdot 993$	126	$3 \cdot 987$	- 224	$4 \cdot 978$	-350	5.965	- 503	20
-074	$\cdot 498$	16	1.029	- 01	2.057	-058	3.084	-130	4.108	'23	5.128	$\cdot 360$	6.145	518	18
. 074	55	12	-059	-015	-117	- 060	- 174	-134	${ }^{+} \cdot 228$	$\cdot 238$	${ }^{-} 279$. 371	. 325	533	12
. 074	. 540	8	-089	-015	$\cdot{ }^{178}$. 061	- 264	-138	. 348	- 244	$\cdot 429$	-385	. 505	. 549	8
1.074	1.562	${ }^{4}$	-119	-016	. 238	063	354	14	468				. 685	564	
-	5	0	$1 \cdot 149$	- 016	$2 \cdot 298$	0.064	$3 \cdot 445$	$0 \cdot 14$	$4 \cdot 588$	0.258	5.729	0.402	6.864	0.579	0

[^1]Rectangular co-ordinates in inches. Computed from $a=6378 \cdot 24 \mathrm{~km} . b=6356 \cdot 56 \mathrm{~km}$. $[e=1 / 294 \cdot 2]$

Longitade	0°		1°		2°		3°		$\begin{aligned} & \text { Dingonals of } \\ & 3^{3^{\circ} \text { Longitude }} \\ & 4^{\circ} \text { Latitude } \end{aligned}$
Latitude	X	Y	X	Y	X	Y	x	Y	
48 44	\bigcirc	17×498 0	2.938 3.158	17.517 0.019	${ }_{6}^{5 \cdot 876}$	17.574 0.077	$\begin{aligned} & 8.812 \\ & 9.472 \end{aligned}$	$\begin{gathered} 17.669 \\ 0.172 \end{gathered}$	$\begin{aligned} & 19.592 \\ & 19.745 \end{aligned}$
${ }_{40}^{44}$	$\stackrel{\circ}{\circ}$	$17 \cdot 486$ 0	3.158 3.362	17.505 0.019	6.315 6.724	17.563 0.075	9.472 10.084	$\begin{gathered} 17 \cdot 658 \\ 0.170 \\ 0 \end{gathered}$	$\begin{aligned} & 19.987 \\ & 20.038 \end{aligned}$
${ }_{36}^{40}$	$\stackrel{\circ}{\circ}$	$17 \cdot 474$ 0	3.362 3.550	17.493 0.018	$\begin{aligned} & 6.724 \\ & 7.099 \end{aligned}$	17.549 0.073	$\begin{aligned} & 10 \cdot 084 \\ & 10.648 \end{aligned}$	$\begin{gathered} 17 \cdot 644 \\ 0.164 \\ 0.164 \end{gathered}$	$20 \cdot 175$ 20.322
36 32	\bigcirc	${ }_{\substack{17 \\ \hline 1861 \\ 0}}$	3.550 3.720	17.479 0.017	7.099 7.40	17.534 0.069	(10. $\begin{gathered}10.648 \\ 11.160\end{gathered}$	17.625 0.155 10	20.452 20.592
32 28	\bigcirc	$\stackrel{17}{ }{ }^{1749}$	3.720 3.873	17.466 0.016	$7 \cdot 40$ $7 \cdot 745$	17.518 0.063	(11.160	$\underset{\substack{17.604 \\ 0.143}}{ }$	20.713 20.844
28 24	\bigcirc	17.437 0	$3 \cdot 873$ 4.006	17.453 0.014 10.4	7.745 8.012	17.500 0.057	[11.61711.617 12.017 12.017		20.952
${ }_{20}^{24}$	\bigcirc	${ }_{\substack{17 \\ \hline \\ 0}}$	4.006 4.120	17.442 0.012	- $\begin{aligned} & 8.012 \\ & 8.240 \\ & 8.200\end{aligned}$	$\begin{array}{r} 17.485 \\ 0.049 \end{array}$	$\begin{aligned} & 12.017 \\ & 12 \cdot 360 \end{aligned}$	17.556 0.118 18	$21 \cdot 169$ 21.275
20 16	$\stackrel{\square}{\circ}$	$17 \cdot 419$ 0	4.120 4.214	17.431 0.010	-8.240 8.48 8.48	17.468 0.041 17	$\begin{aligned} & 12.960 \\ & 12.642 \\ & \hline \end{aligned}$	17.530 0.091	21.359 21.449
16 12	\bigcirc	$17 \cdot 413$ 0	4.224 4.288	17.423 0.008	$\begin{aligned} & 8.428 \\ & 8.575 \end{aligned}$		$\begin{aligned} & 12 \cdot 642 \\ & 12.863 \end{aligned}$	17.504 0.070 17.40	21.518 21.592
${ }_{8}^{12}$	\bigcirc	$17 \cdot 408$ 0	4.288 4.340	17.416 0.005	8.575 8.681	17.439 0.021	$\begin{aligned} & 12 \cdot 863 \\ & 1.3 .021 \\ & \hline \end{aligned}$	$\begin{array}{r}17.478 \\ 0.047 \\ \hline 19.45\end{array}$	$\begin{aligned} & 21 \cdot 645 \\ & 21 \cdot 701 \end{aligned}$
${ }_{4}^{8}$	\bigcirc		4.340 4.372	17.408 0.003	$\begin{aligned} & 8 \cdot 681 \\ & 8 \cdot 744 \end{aligned}$	$\underset{\substack{17.424 \\ 0.015}}{ }$		17.450 0.024 1042	21.735 21.773
${ }_{0}^{4}$	\bigcirc	${ }_{\substack{17 \\ 0 \\ 0}}$	4.372 4.383	17.406 0.000	8.744 8.766	17.414 0.000	$\begin{aligned} & 13 \cdot 116 \\ & 13 \cdot 148 \end{aligned}$	17.427 0.000	21.792 21.811

The lengths of the parallels bounding the sheets each containing 4° of latitude are correct. Intermediate parallels are somewhat diminished.

The lengths of meridians are slightly in error: the error on the central meridian is equal but of opposite sign to that of the outer meridian separated from the central meridian by 3° of longitude.

The error in length of the central parallel of a 4° square is approximately -0.06% of its true length, being $=2\left(\frac{1}{2} \delta \lambda\right)^{2} \times 100$, where $\delta \lambda$ is measured from centre to elge so that $\frac{1}{2} \delta \lambda=$ radian measure of $1^{\circ}=\cdot 01745$.

The errors in length of outer and centre meridians are $\pm 0.7 \cos ^{2} \lambda \%$ of their true lengths.

For fuller information see original pamphlet by M. Ch. Lallemand, "On the deformation resulting from the method of constructing the International Atlas of the World on the scale of one to one million" translated by J. Eccles M. A. Dehra Dūn 1912.

Modified Secant Conical Projection computed between various limits of latitude. Percentage scale error along parallels.

[^0]: \uparrow For Pereentage of error of longitude on various parallels, see Note for 20 Mnp.

[^1]: - For Percentage of error of longitude on various parallels, see Note for 20 Map .

